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Object manipulation is one of the essential tasks for a home helper robot, especially in helping a disabled person to
complete everyday tasks. For handling various objects in a category, accurate pose estimation of the target objects is
required. Since the pose of an object is often ambiguous from an observation, it is important to select a good next-
viewpoint to make a better pose estimation. This paper introduces a metric of the object pose ambiguity based on the
entropy of the pose estimation result. By using the metric, a best next-viewpoint recommendation method is proposed
for accurate category-level object pose estimation. Evaluation is performed with synthetic object images of objects in five
categories. It shows the proposed methods is applicable to various kind of object categories.
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1 Introduction

Recently, estimating the rotation of a target object; object pose
estimation, has become a focussed topic in the robot vision field.
To estimate the target object’s pose, a vision sensor is an vital de-
vice for a robot to capture the target’s information. Stereo cameras,
Light Detection And Ranging (LiDAR), RGB and Depth (RGB-D)
cameras are popular vision sensors equipped to robots. In this pa-
per, we use depth images captured by a depth sensor to estimate
the object pose, because they are robust to texture variations and
can capture the shape of the target well.

The template matching approach is one of the earliest pose es-
timation methods from an input image!). Murase and Nayer?)
proposed the Parametric Eigenspace method to lessen the amount
of templates in this task. Recently, Ninomiya et al. proposed a
method based on the deep feature extraction for embedding the
template into a pose manifold *). For pose estimation from an
image, there is a case that the object pose is ambiguous from the
observation as illustrated in Fig. 1. On the other hand, since robots
have embodyment, they can move to other locations. From the new
location, a different observation can be obtained. Based on this,
many researchers focus on object pose estimation from multiple
viewpoints.

For example, Zeng et al*), Erkent et al.’), Collet and Srini-
vasa®), Kanezaki et al.”, and Vikstén et al.*), proposed pose es-
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timation methods using observations from multiple viewpoints.
However, most of these methods only focus on pose estimation
using a given image set and do not consider how to select the view-
points.

Bajcsy et al. discussed the idea of active perception, initially in
the context of the sensor planning problem”). Since controlling the
camera view is the most crucial issue to recognize objects, recent
researches focus on predicting the best next-view'®'?). The re-
cent active perception works '*)'*) propose the best next-viewpoint
prediction for pose estimation of multiple target objects based on
Hough Forest. However, these methods focus on target objects
whose shapes are known. In daily environment, there are vari-
ously shaped objects even within an object category. Therefore,
pose estimation methods should be robust to the shape variation
within the target object category, that is, category-level object pose
estimation is desirable.

In this paper, we focus on how to select the next viewpoint given
an initial viewpoint for object pose estimation from multiple view-
points. We propose a best next-viewpoint recommendation method
based on a novel metric “pose ambiguity”, which reflects the diffi-
culty to estimate the pose correctly from the given inputs as illus-
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Fig. 2: Selection of the next viewpoint from the initial viewpoint based
on the ambiguity scale. The bar graph indicates the ambiguity value for the
three cases of the next viewpoint as illustrated

trated in Fig. 2.

The best next-viewpoint can be discovered by electing the view-
point where the pose ambiguity is the smallest given observations
from the initial and the next viewpoints. However, since the esti-
mated initial viewpoint is also ambiguous, we consider the initial
viewpoint as a latent variable to keep all possibilities of the object
pose from the initial viewpoint.

In this paper, to focus on the essential part of the problem set-
ting and idea, we explain and evaluate the method by limiting to a
single axis rotation. However, the extension to 3D rotation could
be straightforwardly explainable. With the utilization of object im-
ages rendered from the public 3D object dataset, ShapeNetls) , we
conducted several assessments on the proposed method’s effective-
ness.

Our contributions are summarized as follows:

« Definition of a new metric called “pose ambiguity” to exam-
ine the ambiguousness for the pose estimation task.

* Introduction of a new standard for finding the best next view-
point for category-level object pose estimation.

« The proposed method outperforms two other naive viewpoint
recommendation methods in several pose estimation analysis,
and also it achieves a better result than the result from a single
viewpoint.

Note that this paper is an extended version of our previous confer-
ence paper'®). Compared to it, firstly, we added an evaluation on
various object categories to confirm the performance of category-
level object pose estimation. The evaluation is performed with ob-
jects in five categories. Secondly, we revised the formulations of
the proposed method to make the concept of the paper clearer.

The remaining of this paper is structured as follows: In Chap-
ter 2, the proposed method will be introduced in detail. Chapter 3
will introduce the evaluation with discussion on the results. Fi-
nally, we conclude the paper in Chapter 4.
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Fig. 3: Illustration of the idea on the one given viewpoint (top), and two
given viewpoints (bottom) for the next viewpoint recommendation

2 Best Next-Viewpoint Recommendation

2.1 Overview

In this research, we propose a novel problem setting, which is
the best next-viewpoint recommendation'®). We define a metric
called “pose ambiguity” given two different viewpoints; the initial
viewpoint ¢ and the rotation angle § to the next viewpoint from
¢ are considered as its parameters. In this chapter, we propose
a method to recommend the best next-viewpoint by selecting the
next viewpoint whose “pose ambiguity” will be the minimum. By
a standard pose estimation method, because of the shape of the tar-
get object, the pose estimation result from the current observation
I may be ambiguous from the initial viewpoint ¢. Assuming the
current viewpoint as a latent variable, the defined pose ambigu-
ity function is decomposed into “pose ambiguity under given two
viewpoints” and “viewpoint ambiguity under a given observation”
as shown in Fig. 3. The minimum value of the pose ambiguity
infers the best next viewpoint as ¢ + §. Once we can obtain the
rotation angle §, we can re-observe the object from the recom-
mended viewpoint and estimate the pose by averaging these two
viewpoints. We will present the process in details in the subse-
quent sections.
2.2 Minimum Pose Ambiguity Selection Framework

This framework measures the defined pose ambiguity in a quan-
titative way. For the framework, we first need to define the pose
ambiguity. Here, we define it as the difficulty to estimate the pose
of an object in a category from a viewpoint. If the possibility of
the estimated object pose @ is widely distributed, the result can be
considered as ambiguous. Therefore, we define the pose ambiguity
A(8; I) based on the pose likelihood distribution p(8|1,§) given
the initial observation I and rotation angle 4. Here, we introduce
a mapping function GG from the pose likelihood distribution to the
pose ambiguity. For example, GG can be defined by the entropy of
p(0|1,6) as

A(8; 1) = G(p(6l1,0)) = —fp(filf,tf) logp(0|1,6)df. (1)

Here, the pose likelihood distribution given an image [ is ob-
served from the initial viewpoint, and then this pose likelihood dis-
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tribution will yield the rotation angle 6 to the best next-viewpoint.
Therefore, we define the pose likelihood distribution as a con-
ditional distribution p(#|1,d) when an image I from the current
viewpoint and a rotation angle § are given.

The minimum value of the pose ambiguity will tell us the best
next-viewpoint for accurate pose estimation from the two view-
points. By using the formulation, we find the best next-viewpoint
by finding the minimum entropy as

§ = argmin A(8; I). )
&

To calculate the ambiguity, we further decompose the pose like-
lihood distribution using a latent variable ¢, which represents the
initial viewpoint as follows:

p(011,6) = [ p(61, 8)p(6|1)ds. 3

The first term p(6|¢, §) gives the pose likelihood distribution given
two viewpoints ¢ and ¢ + 4, and the remaining p(¢|I) indicates
the viewpoint likelihood given an observation /. In the following
sections, we explain more details on the two distributions.
2.3 Viewpoint Likelihood Distribution

To measure the object pose, we need to define the origin of the
object rotation. Then, we can estimate the object pose as a relative
rotation angle of the viewpoint from the origin. However, it is
difficult to estimate a fixed rotation angle from the observation, the
viewpoint likelihood distribution given an observation is used. In
the ideal case, if we have a pose estimator, which can output the
distribution itself, such as a discrete pose classifier, we can use
the output distribution directly. On the other hand, if we take a
regression-based approach for the pose estimation, such as Pose-
CyclicR-Net proposed by Ninomiya et al.*), we may only obtain
an estimation result such as

¢ = f(I), C))

where I represents a given observation and f the pose estimator.

For such a regression-based pose estimator, how can we obtain
the viewpoint likelihood distribution? Since we have many images
1I; of various objects in the object category, by applying pose es-
timation to those images, we can obtain many pose estimation re-
sults ¢;. From these results and corresponding ground-truth poses,
we can obtain a large number of pairs of an estimation result and
its ground truth.

By applying density estimation to these data, we can obtain a
conditional distribution as p(¢|f(i)) = p(dgt|dest), Where ¢gt
represents the ground truth and ¢eg the estimation result. By us-
ing this conditional distribution, we can obtain the viewpoint like-
lihood distribution as

p(8l1) = p(o]f(1)) ©)
for the given regression-based object pose estimator.
2.4 Pose Likelihood Distribution
Here, we explain the pose likelihood distribution given two
viewpoints ¢ and ¢ + d, where ¢ represents the initial viewpoint
and ¢ the rotation angle to the next viewpoint. The likelihood dis-

Recommendation

Fig. 4: Process flow of the best next-viewpoint method

tribution can simply be decomposed into two pose likelihoods as

p(6],6) = p(6|¢)p(0] + 9), (6)

where p(60|¢) and p(8|¢ + &) represent the pose likelihood distri-
butions given a viewpoint ¢ and ¢ + §, respectively. This equa-
tion holds by assuming p(@), which is the pose likelihood without
any information, follows a uniform distribution. Each likelihood
distribution given a viewpoint can also be calculated by applying
density estimation for the pairs of a pose estimation result and the
ground truth in the same way as in Section 2.3.

2.5 Pose Estimation

After finding the best § by Equation (2), we can finally estimate
the object pose from the two viewpoints; the initial viewpoint ¢
and the next viewpoint ¢ + 3. Here, I, is the image observed from
the initial viewpoint ¢. After rotating 3: we obtain [z, which is the
image observed from the next viewpoint.

We estimate the pose ). from the two viewpoints as the average
of pose estimation results ¢, and ¢2 from I and [, respectively,
considering the rotation angle 5 as
_ i+ da-0

2 )
where ¢y = f([I) is the pose estimation from the initial viewpoint
and ¢2 = f([2) is that from the next viewpoint. Since & is selected
in terms of the minimum pose ambiguity given an initial viewpoint
and the rotation angle 3, the averaged pose 0. will be optimal.

The next viewpoint recommendation idea, which consists of

fe )

training and recommendation phases, is shown in Fig. 4. In prac-
tice, the pose likelihood distribution p(@|1, &) is implemented by
a lookup table. This lookup table is pre-computed in the train-
ing phase. In the recommendation phase, after the current pose is
estimated from the initial viewpoint p(¢|I), we can obtain ] by
referring to the lookup table.

3 Experiments

3.1 Dataset

To show the effectiveness of the proposed viewpoint recommen-
dation method, we performed a simulation-based evaluation. For
the simulation, we selected 125 3D models in five object cate-
gories “Airplane”, “Car”, “Chair”, “Mug”, and “Toilet” from the
ShapeNet dataset'”). Concretely, we put a 3D model in a virtual
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Fig. 5: Example of images from the “Airplane”, “Car”, “Chair”, “Mug”,

and “Toilet” class in the ShapeNet dataset!5)
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Fig. 6: Example of “Mug” images observed from different elevation an-
gles

a

environment and observed it using a virtual depth sensor. By rotat-
ing the sensor around the z-axis of the 3D model, 360 depth images
in the range of [0°, 360°) are obtained for each model as shown in
Fig. 5. To focus on the essential part of the proposed algorithm,
we estimated the pose in the single axis rotation setting. Addi-
tionally, in the simulation, we changed the elevation angle of the
virtual sensor as 0°, 15°, 30°, 45°, 60°, and 75° which is elevated
upright from the z-plane as shown in Fig. 6

In total, 125 objects were observed from each elevation angle
with a total of 45000 images. We used the rendered images for
training and testing in the evaluation. We divided these 125 ob-
jects in a category from the synthetic datasets into five folds for
evaluating the proposed pose estimation method compared to other
methods in a five-fold cross-validation setup. For each fold, im-
ages of 25 objects were used for testing and the remaining objects
for training the model.
3.2 Evaluation Method
3.2.1 Pose Estimation Method

For the proposed method, any regression-based pose estimation
method can be used. Since this part is not the core of the proposed
method, we simply use a network architecture similar to the Pose-
CyclicR-Net proposed by Ninomiya et al.*) as the pose estimator.
Since we assume that the object pose variation is limited to a single
axis rotation, we modify the network output to a pair of trigono-
metric functions (cos@,sin @) instead of the original quaternion.
We train the pose estimator using the training images.
3.2.2 Evaluation Criteria

‘We evaluate how the recommended viewpoints are appropriate
for the pose estimation by using several criteria. Basically, we
evaluate it by comparing the pose estimation results using the ini-
tial viewpoint and the recommended viewpoint. One criterion is
the Mean Absolute Error (MAE) of the pose estimation results to
the ground truth. The pose estimation results are obtained by using
a pair of the initial viewpoint and the recommended viewpoint. By

=
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Fig. 7: Example of images observed from the estimated viewpoints by the
proposed method and comparative methods

considering the circularity of angles, the error can be calculated as

MAE = — E:dm‘w ®
where N represents the number of images, 6. and 6 the pose
estimation result and the ground truth, respectively. d(6Z, 65 ) is the
absolute difference of the poses considering the circularity defined
as

B — 0, if |8 — 64| > 180°,
PSR (0 00— 6g] > 180,
180° — |f. — 8, otherwise.
The other criterion is Pose Estimation Accuracy (PEA), which is
defined as

PEA(T E:Fdw‘m ), (10)

where 7 represents a threshold error which reflects the difference
of pose estimation result ; and the ground truth 8, F'(-) is a func-
tion which returns 1 if the condition in the function holds and 0
vice versa.

Standard deviation over the five-fold cross-validation is also
evaluated.
3.2.3 Comparative Methods

We compared the pose estimation results by the proposed
method and several other baseline methods. To the best of our
knowledge, there is no existing work that could be directly com-
pared with the proposed next best-viewpoint recommendation
method for the category-level object pose estimation task except
for Sock et al.’s work. They proposed several methods; one is
“Random™ which randomly selects the next viewpoint, and the
other is “Furthest” (in this paper, we called it “Opposite” instead)
which recommend the completely opposite side. We use these
methods as comparative methods. We also prepared a pose esti-
mation method from a single viewpoint, which just applies a Pose-
CyclicR-Net-like network to the input image from the initial view-
point as a baseline method.
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Table 1: Comparison of MAE for the five categories when the elevation
angle is 0° by five-fold cross validation

Target Single Random Opposite Proposed
Object
“Airplane” 12.86° 11.76° 11.79° 11.45°
“Car” 8.73° 7.75° 8.12° 7.09°
“Chair™ 10.88° 8.24° 7.30° 8.77°
“Mug” 13.07° 11.34° 11.03° 9.58°
“Toilet” 10.12° 8.54° 7.96° 7.66°

Table 2: Comparison of MAE for different elevation angles of “Mug” by
five-fold cross validation

Elevation Single Random | Opposite Proposed
Angle

0° 12.55° 10.67° 10.14° 9.34°

15° 12.63° 10.79° 10.36° 9.51°¢
30° 12.11° 10.25° 9.97° 8.81°
45° 8.98° 7.46° 7.12° 6.76°
60° 6.05° 5.04° 5.07° 4.68°
75° 4.80° 4.01° 3.83¢ 4.44°

Fig. 7 shows an example of outputs of each viewpoint recom-
mendation method for a given “Mug” image.
3.3 Results
3.3.1 Mean Absolute Error (MAE)

‘We conducted pose estimation error analysis with various object
categories; “Airplane” “Car”, “Chair”, “Mug”, and “Toilet”. Table
1 tabulates the MAE comparison between all five object categories
when the elevation angle is 0°. We see that the proposed method
almost outperforms the comparative methods for different target
objects. Only in the “Chair” category, the proposed method ranks
the third. Overall, this result shows that the proposed method is
capable to produce a good estimation for various categories.

Then, to investigate the relation between the elevation angle with
the pose estimation method, we choose “Mug” as the target object
and show the results in Table 2. For most of the elevation angles,
the proposed method almost outperforms the comparative meth-
ods. The “Opposite” method outperforms the proposed method
only in the case of 75° elevation angle. For this elevation angle,
the proposed method is not the best but still could be considered
comparable to the comparative methods. However, since in our
work, the main priority is the pose estimation from 0° to 45° con-
sidering the ambiguity problem, these cases become less critical.

These results clearly show that the proposed method is effective
and gives a better way (next viewpoint) for object pose estima-
tion. We successfully managed to reduce the pose ambiguity in the
difficult observation which has been mentioned earlier in Fig. 2.
We can see that estimating an object’s pose from two viewpoints
yields a better result than that from a single viewpoint. By com-
paring with the other pose recommendation methods, the proposed
method achieves better results by carefully selecting the best view-
point for object pose estimation.

Table 3: Comparison using Partial-AUC (pAUC) of Pose Estimation Ac-
curacy by changing the error threshold for for the five categories when the
elevation angle is 0° by five-fold cross validation

Target Single | Random | Opposite | Proposed
Object
“Airplane” 89.01 89.01 89.03 89.65
“Car” 92.35 92.00 91.52 92.58
“Chair” 88.76 91.27 92.19 90.72
“Mug” 87.12 88.35 88.46 90.24
“Toilet” 90.72 91.20 91.55 92.23

Table 4: Comparison using Partial-AUC (pAUC) of Pose Estimation Ac-
curacy by changing the error threshold 7 from 0° to 100° by five-fold cross
validation

Elevation Single | Random Opposite | Proposed
Angle

0° 87.73 89.09 89.52 90.68

15° 87.79 88.91 89.16 90.53
30° 88.23 89.44 89.74 91.11
45° 91.01 92.13 92.50 92.95
60° 93.68 94.49 94.44 94.92
75° 94.85 95.51 95.64 95.14

3.3.2 Pose Estimation Accuracy (PEA)

In general, smaller error is the main priority for pose estima-
tion analysis with the comparative methods. We analyze the pose
estimation accuracy by changing the error threshold 7 in Equa-
tion (10) in the case of elevation angle 0°. To see the performance
of the proposed method with the various categories, we calculated
partial-AUCs (pAUCs) as summarized in Table 3. The proposed
method achieved the highest pAUCs than the comparative methods
for the four object categories.

Using “Mug” as the target object category, an evaluation for
PEA is conducted with the elevation angles, from 0° to 75°. In
five out of six elevation angles, the proposed method achieved the
most accurate results compared to the other methods as illustrated
in Table 4. For the remaining elevation angle, 75°, the proposed
method was not the best but could be considered comparable to the
comparative methods. This is because object poses are easily dis-
tinguishable from the initial viewpoints. In these cases, viewpoint
selection becomes less important.

3.3.3 Example of Pose Ambiguity Minimization Output Result

In Table 5, estimation results of different inital viewpoints are
shown. We divided the initial viewpoints into four groups as shown
in Fig. 8; Viewpoint group 1 (0° — 44 ° and 315° — 359°), view-
point group 2 (45° — 134 °), viewpoint group 3 (135° —224°), and
viewpoint group 4 (225° - 314°). The proposed method outper-
forms the comparative methods in most viewpoint groups.

For qualitative study, we compare the initial viewpoint image
with the best next-viewpoint using the “Mug” images. Since the
proposed method could suggest and select the best next-viewpoint,
even though we have an ambigious image as the initial viewpoint,
the proposed method could still estimate the object’s pose accu-
rately. Table 6 provides the output examples from a less ambigious
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Table 5: Comparison of MAE for “Mug” for different viewpoint areas (0°
elevation angle)

Vicspoit Single Random Opposite Proposed
group

1 9.03° 7:31% 6.30° 6.00°

2 17.66° 11.43° 9.23° 9.97°

3 7.13° 6.77° 6.30° 6.01°

4 6.97° 6.71° 9.22° 5.41°

Viewpoint group 3 (225" — 314")

Fig. 8: Image examples for the four group area using the “Mug” object
category

initial viewpoint for the proposed method and comparative meth-
ods. We can see that the proposed method achieves better pose
estimation results than the comparative methods.

3.3.4 Statistical Analysis of Pose Estimation Errors

For the statistical evaluation of the results introduced above, we
show the boxplot of the pose estimation errors in Fig. 9. This
boxplot graph indicates the minimum, lower quartile, median, up-
per quartile, and maximum values. The median values of the re-
sults of the proposed method shows the lowest value for “Airplane”
and “Mug”. For “Car” and “Toilet” the proposed method performs
compatatively with the “Opposite” method. However, for “Chair”,
the proposed method ranked the third. The outlier’s absence shows
that the proposed method delivers a promising approach of estimat-
ing the pose from an ambiguous viewpoint.

By focussing on the elevation angle at 0° with “Mug” images,
the pose estimation error and the pAUCs of PEA for each fold
is illustrated in Table 7. The standard deviation of the proposed
method is 3.92 which shows that the proposed method is the sec-
ond stable among all the methods. For the PEA analysis, for the
fold numbers 2 to 5, the proposed mwthod gained the highest esti-
mation accuracy. The standard deviation of the proposed method,
for the PEA analysis, is 3.05 which also shows that the proposed
method is the most stable method among all the methods.

4 Conclusion

‘We proposed a new framework to recommend the best next
viewpoint for an accurate pose estimation for category-level ob-

Table 6: Comparison of MAE for “Mug™ when the elevation angle is 0°
for viewpoint areas. The value in bracket represent the different between
image initial viewpoint and the pose estimation result

Image ] Single | Random | Opposite | Proposed

342.0° 356.0° 357.5° 0.0°

(18.0%) (3.5°) (2.5°) (0.0%)

40.0° 39.5° 41.5° 32.0°

219.0° 223.0° 220.5° 207.5°

(9.0°) (13.0°) (10.5°) (2.5°%)

298.0° 292.0° 298.5° 326.5°

0.0°
30.0° (10.0°) | (9.5°) (11.5%) (2.0°)
210.0°

330.0° (32.0°) (38.0) (31.59) (3.5°)

25 @ Single
= £ Random
E. " E Opposite
=] [ Proposed
(59 . 1
=
S 151
o= L] |
Bl .

m 10 [E?
: :
o
~
5 .
Airplane Car Chair Mug Toilet

Target Object

Fig. 9: Boxplot for all target object for 0° elevation angle

ject pose estimation. We also proposed a new method for find-
ing the minimum pose ambiguity. We showed that the proposed
method statistically outperforms three comparative methods in the
category-level pose estimation through five-fold cross-validation.
By using the recommended viewpoints, a high pose estimation ac-
curacy was stably achievable. This approach could help the devel-
opment of the human helper robot field.

For future improvement, we are planning to extend the proposed
method to multi-dimensional axis rotation. Expanding the best
next-viewpoints recommendation to multi-step viewpoints recom-
mendation has also been projected as our upcoming task. In this
paper, we used a simple averaging for the two pose estimation re-
sults ¢»1 and ¢ and considering the rotation angle § as shown in
Equation (9), but there is room for futher improvement. Handling
real depth data with heavy noise is one of future work.

Acknowledgements

The authors would like to thank the Universiti Teknikal
Malaysia Melaka (UTeM) and Ministry of Education (MOE)
Malaysia for the financial support under the scholarship of
Skim Latihan Akademik IPTA (SLAI). Parts of this research
were supported by MEXT Grant-in-Aid for Scientific Research
(17H00745).

BRI HR:E/Journal of the Japan Society for Precision Engineering Vol.87, No.5, 2021 445



Best Next-Viewpoint Recommendation by Selecting Minimum Pose Ambiguity for Category-Level Object Pose Estimation

2)

3)

4)

5)

6)

b

8)

Table 7: Comparison of the overall Pose Estimation Accuracy (PEA) and Partial-AUC (pAUC) for each fold (0° elevation angle)

Testing Single Random Opposite Proposed
Fold
PEA | pAUC PEA | pAUC PEA | pAUC PEA | pAUC
Number
Fold 1 19.68° 8223 | 17.59° 82.91 16.03° 84.29 | 16.06° 85.53
Fold 2 13.07° 87.12 | 11.34° 88.35 11.03° 88.46 9.58° 90.24
Fold 3 10.20° 89.36 8.05° 91.45 7.76° 91.73 6.85° 92.59
Fold 4 9.92° 90.09 8.00° 91.59 7.45° 92.04 7.10° 92.59
Fold 5 9.88° 89.87 8.35°¢ 91.15 8.41° 91.09 7.09° 92.42
Average | 12.55° 87.23 | 10.67° 89.09 | 10.14° 89.52 9.34° 90.68
o 4.20° 3.29 4.11° 3.70 3.59° 3.25 3.92¢ 3.05
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