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Abstract

In autonomous driving, end-to-end driving models

(E2EDMs) have become increasingly popular due to their

exceptional predictive performance. This performance

stems from leveraging a backbone that is pre-trained on

large datasets and then fine-tuned for driving tasks. How-

ever, the opaque nature of these E2EDMs presents a chal-

lenge to explainability, thus visual explanations are created

to shed light on the decision-making process of E2EDMs.

Currently, these E2EDMs have been made more explain-

able by fine-tuning the driving tasks along with a side task

designed for explainability. This side task for explainability

requires complex structures with auxiliary data, such as the

location of objects.

In this paper, we argue that a more effective approach

to enhancing the explainability of E2EDMs is to design a

fine-tuning specifically focused on explainability. We pro-

pose CROp-based COntrastive DIscriminative LEarning

(CROCODILE) to enhance a backbone’s capability to ac-

curately identify object features during this additional fine-

tuning for explainability. By adopting CROCODILE, we

can develop more explainable E2EDMs without relying on

auxiliary data or complex structures in the fine-tuning for

driving tasks. Our experimental results confirm that our

approach enhances the explainability of E2EDMs.

1. Introduction

Autonomous driving models [1] are primarily categorized

into two types: modular pipeline systems [2] and end-to-end

driving models (E2EDMs) [3]. Modular pipeline systems are

known for their higher explainability but face limitations in

predictive accuracy. In contrast, E2EDMs offer higher ac-

curacy but suffer from low explainability due to their “black

box” nature. This accuracy-explainability trade-off presents

a significant challenge in the field of autonomous driving [4].

As deep learning technology rapidly evolves, researchers

are focusing more on enhancing the explainability of
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Fig. 1 The comparison of our proposed method and previous
method.

E2EDMs [3], [5], [6] to develop autonomous driving models

that are both accurate and easily understandable. In ex-

plaining E2EDMs, explanation methods are used to provide

explanations for upcoming observations [7], [8], [9].

Numerous strategies [11], [12], [13] enhance the explain-

ability of E2EDMs by incorporating side tasks that need

auxiliary data and complex structures during the fine-tuning

for driving tasks. However, this approach can necessitate

substantial modifications to the E2EDMs’ architecture, de-

viating from their inherent end-to-end nature. Such modi-

fications can complicate the training process and affect the

core design of E2EDMs.

In response to these challenges, we aim to improve the ex-

plainability of purely E2EDMs without compromising their

fundamental design. As depicted in Fig. 1, instead of im-

proving explainability in the fine-tuning for driving tasks,

we add an additional fine-tuning process specifically de-

signed for improving explainability, it is situated between

pre-training and fine-tuning, it concentrates on training the

E2EDMs’ backbone to better recognize objects. Since the

human recognition system is based on objects, the capa-

bility to use objects to predict driving actions determines

the explainability of E2EDMs. The novelty of this paper

is separating the explainability-enhancing training from the

driving-task training, allowing us to preserve the end-to-

end integrity of the E2EDMs. Our experiments have shown

that our approach significantly enhances the explainability

of E2EDMs beyond what previous attempts have achieved.
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Fig. 2 The basic idea of our approach.

2. Related work

2.1 Contrastive learning approaches

Contrastive learning [14], [15], [16], [17], pivotal in self-

supervised learning for image-based computer vision, em-

phasizes learning representations by using positive pairs and

negative ones. A seminal work in this domain is “Momen-

tum Contrast (MoCo),” [17] which innovated a dynamic dic-

tionary, queue, and momentum updated encoder for effec-

tive contrastive learning, demonstrating significant efficacy

in developing high-quality representations.

Although methods like MoCo have excelled in boosting

predictive accuracy in downstream tasks, their focus has

not been on enhancing model explainability. Our framework

diverges from traditional contrastive learning by aiming to

improve the explainability of models within learning tasks,

marking a novel direction in this field.

2.2 Enhance the explainability of E2EDMs

Efforts to enhance the explainability of E2EDMs have

seen varied success. Wang et al. [11] initially used object

features for driving actions but observed a decrease in pre-

diction accuracy, which they later attempted to rectify by

incorporating 3D object information. Xu et al. [12] de-

veloped a multi-task model with object labels. In our prior

work [13], we introduced the ROB structure to be integrated

into E2EDMs to improve explainability. However, these ap-

proaches often steered away from the integral end-to-end ar-

chitecture, compromising the inherent benefits of E2EDMs.

In this paper, we proposed a novel method to enhance

the explainability of E2EDMs. Our method distinctly sepa-

rates the enhancement of explainability from the fine-tuning

phase. We focus on training the E2EDMs’ backbone with

object information in a phase before fine-tuning, thus en-

hancing explainability without compromising the core end-

to-end model structure.

3. Method

3.1 The basic idea of our approach

Based on previous studies [18], [19], [20], a high-

explainability E2EDM should possess a robust capability

to process object information. Therefore, our goal is to

enhance the backbone with this critical ability. We intro-

duce CROp-based COntrastive DIscriminative LEarning

(CROCODILE) during an additional fine-tuning process

to train the backbone. The basic idea is that the backbone

must exhibit strong proficiency in processing object features

Backbone

Backbone

Crop
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pair

Global feature
Crop the object

Local feature

Object feature

Fig. 3 The definition of positive pairs.
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Fig. 4 The definition of negative pairs.

within images, specifically preserving object features in their

corresponding spatial locations. An example is shown in

Fig. 2, where an object is located within a green box in the

global image. After processing this global image through the

backbone, we obtain a global feature. Within this global

feature, the local features corresponding to the object’s

location should still represent the specific object within the

green box, rather than being a mix of features from the

surrounding environment or adjacent objects. We use the

contrastive learning method to realize this idea, thus intro-

ducing the design of positive and negative pairs.

3.2 CROCODILE: Crop-based contrastive dis-

criminative learning

3.2.1 The design for positive pairs

Positive pairs serve an important role in the contrastive

learning method, they indicate that two features should be

similar. In this paper, we denote a local feature and an

object feature as positive pairs. As shown in Fig. 3, the

local feature is cropped from the global feature, and the

crop position is the position of a specific object in the in-

put image. To obtain the object feature, we first crop the

specific object from the input image and then input it to the

backbone. Although both features target an object, the lo-

cal feature inevitably includes some contextual information

from the entire image, the object feature represents pure

object-specific features. By using these two features as pos-

itive pairs, we train the backbone to effectively capture and

retain object features even when processing the entirety of

an image. This ensures that the backbone develops a robust

capability to process object information.

3.2.2 The design for negative pairs

On the other hand, negative pairs indicate that two fea-

tures should be dissimilar. In this paper, we denote a devi-

ated local feature and the object feature as negative

pairs. As shown in Fig. 4, the deviated local feature is
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Fig. 5 The comparison of our proposed method and previous method, the backbone θq is
the resulting backbone for future usage.

also cropped from the global feature, but the crop position

is a random position near the specific object in the input im-

age. By using these two features as negative pairs, we train

the backbone to discriminate the surrounding environment

or adjacent objects from the target object feature.

3.2.3 The combination of positive pairs and neg-

ative pairs

We simply combine the positive pairs and the negative

pairs to obtain the final CROCODILE. To enhance the

backbone’s capability to accurately detect objects within

images, we utilize the known location information of various

objects (like vehicles, pedestrians, and traffic lights) in the

image to define positive and negative pairs. Note, as shown

in Fig. 5, the object feature serves as a teacher for the local

feature and the deviated local feature. Therefore, to obtain

a relatively stable object feature to train the network, the

backbone θk is momentum updated [17] by θq.

Similar to previous studies that enhance explainability by

fine-tuning the driving tasks along with a side task designed

for explainability, our method also requires object location

information for training. However, the key difference lies

in our approach is where to utilize this object information.

Previous research used backbones pre-trained on ImageNet

[22] and then used object information during the fine-tuning

of the E2EDMs. In contrast, after we obtain the pre-trained

backbones, we advance the stage of using object information

and train the backbone with CROCODILE in an addi-

tional fine-tuning specifically designed for explainability.

4. Experiment

4.1 Dataset

In this paper, we use two datasets derived from BDD-

100K, each serving a specific purpose. The first dataset is

used to enhance the backbone’s capability in detecting and

recognizing objects. The second dataset is designed to fine-

tune E2EDMs [23].

4.1.1 Fine-tune the backbone with CROCODILE

for explainability: The BDD-100K Dataset

In the BDD-100K dataset, this collection is specifically

gathered for object-tracking tasks. As illustrated in Fig. 6,

Fig. 6 In a typical scene in the dataset, the green arrow with a
check mark indicates availability, while the red arrow with
a forbidden character indicates that it is not.

it comprises videos shot from a driver’s perspective, cap-

turing driving environments. Each frame in these videos is

annotated with the location of every object within the scene,

thus we can further pre-train the backbone. The collection

provides approximately 200K images.

4.1.2 Fine-tune the E2EDMs for driving tasks:

The BDD-3AA Dataset

Previous driving datasets [3], [5] primarily labeled a single

driver-chosen action as correct for each scenario, overlook-

ing the reality that drivers often have multiple valid options.

This approach risked training E2EDMs with a narrow un-

derstanding of driving situations, limiting the effectiveness

of their explanations.

To overcome this, we adopted the BDD-3AA (3 Available

Actions) [23] dataset, which annotates each scenario with

three possible actions: acceleration, left steering, and right

steering. This approach transformed the driving task into

a multi-label classification problem, better suited for evalu-

ating the persuasibility of E2EDM explanations. Classifica-

tion tasks like these are particularly effective for assessing

the quality of explanations provided by E2EDMs.

The BDD-3AA dataset comprises 500 video clips. When

presented with successive images capturing the driving sur-

roundings, the objective of the E2EDMs is to determine the

availabilities for three distinct driving actions: acceleration,

left steering, and right steering. For example, in a typical

scene depicted in Fig. 6, the ground truth is represented
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Fig. 7 The comparison of the explanations generated by the E2EDMs trained by
CROCODILE and baseline approach, respectively.

as A = [1, 1, 0]T , where 1 signifies an available action and

0 is an unavailable one. We utilized the macro F1 score to

evaluate prediction accuracy, which involved computing the

average F1 score of the three actions (acceleration, steering

left, and steering right).

Macro F1 =
F1(Âa, Aa) + F1(Âl, Al) + F1(Âr, Ar)

3
, (1)

where Aa, Al, Ar are the acceleration, steering left, and

steering right actions.

4.2 Experiment method to compare our method

with the previous method

To demonstrate the enhanced explainability of E2EDMs

developed with our proposed method compared to those us-

ing traditional methods, we trained two E2EDMs with two

approaches, the baseline approach and the CROCODILE

approach. For simplification, these two E2EDMs are re-

ferred to as baseline and CROCODILE, respectively.

I. Baseline: This E2EDM follows the conventional train-

ing framework: 1. Obtain a pre-trained backbone. 2. Fine-

tune the E2EDM with additional object information to im-

prove explainability [13].

II. CROCODILE: This E2EDM follows the framework

proposed in our paper: 1. Obtain a pre-trained backbone.

2. Train the backbone with additional object information

to improve explainability. 3. Fine-tune the E2EDM with-

out additional object information [13].

Both E2EDMs were subjected to the same explanation

method [24] to generate explanations for observation. The

subsequent sections will present these explanations, showing

the enhanced explainability achieved by our approach.

5. Experiment results and discussion

An experimental method to evaluate the persuasibility of

explanations is proposed in [23]. We gathered 5 participants

who possess driver ’s licenses. Each explanation is evalu-

Table 1 The experimental evaluation results of explanations.

Method Baseline CROCODILE
Heatmap Satisfaction 2.61 3.37

ated by at least three participants, we calculate the average

value as the final score. We assess the participants’ satis-

faction level with the explanations. Participants rate the

heatmap (as shown in Fig. 7) from 1 to 5, with 1 being low

persuasibility and 5 being high persuasibility.

As shown in Table. 1, the explanations generated by

CROCODILE are more persuasive than the baseline.

Specifically, Fig. 7 displays the explanations generated

by CROCODILE and baseline. Our method distinctly

demonstrates a more concentrated focus on object informa-

tion within the images. This evidences that integrating ob-

ject information before the fine-tuning phase of the E2EDMs

substantially enhances the explainability.

6. Conclusion

This paper introduces a novel approach to improve the

explainability of E2EDMs. Unlike traditional methods that

depend on complex structures and additional data during

the fine-tuning phase for better explainability, our method

underscores the value of further pre-training (before the fi-

nal fine-tuning) of the E2EDMs’ backbone. This advanced

pre-training results in a more proficient backbone, and when

these E2EDMs are fine-tuned subsequently, they exhibit no-

tably improved explainability.
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