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Abstract— Vehicle ego-localization is an essential process for
many driver assistance and autonomous driving systems. The
traditional solution of GPS localization is often unreliable in
urban environments where tall buildings can cause shadowing
of the satellite signal and multipath propagation. Typical visual
feature based localization methods rely on calculation of the
fundamental matrix which can be unstable when the baseline
is small.

In this paper we propose a novel method which uses the scale
of matched SURF image features and Dynamic Time Warping
to perform stable localization. By comparing SURF feature
scales between input images and a pre-constructed database,
stable localization is achieved without the need to calculate the
fundamental matrix. In addition, 3D information is added to the
database feature points in order to perform lateral localization,
and therefore lane recognition.

From experimental data captured from real traffic environ-
ments, we show how the proposed system can provide high
localization accuracy relative to an image database, and can also
perform lateral localization to recognize the vehicle’s current
lane.

I. INTRODUCTION

Ego-localization is a critical stage in not just in-car nav-
igation systems, but also a required component for many
of the emerging driver assistance and obstacle avoidance
methods. As we move towards fully autonomous driving
ability, efficient and effective ego-localization is of increasing
importance, as current GPS systems rarely manage an accu-
racy of 5 metres even in ideal environments, and often much
lower in urban situations. Even expensive, high precision
RTK-GPS combined with IMU sensors can be sensitive to
the occlusions common in city driving environments. For
tasks such as lane recognition and obstacle avoidance, higher
precision in all environments is required.

There are many proposed ego-localization methods which
use a variety of different sensors, including SONAR [1],
LASER scanners [2], Inertial Measurement Units (IMU),
cameras [3] or various combinations of the above [4], [5].
There is an increasing number of systems that use a pre-
constructed database which is then localized against [5], [6],
[7], [8]. Most current systems either use several cameras
or a variety of sensors for localization, or are unable to
perform lateral positioning so can not recognize which lane
is currently being used by the vehicle.

In this paper we propose a method for ego-localization
using a pre-constructed database and an in-vehicle monocular
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camera, with no other supporting sensors. In order to achieve
this, we present two main novel contributions:

1) Monitoring the scale difference between SURF [9]
features in the input and database images within a
Dynamic Time Warping (DTW) method to achieve
stable localization in the direction of motion, without
calculation of the fundamental or essential matrices

2) Embedding of 3D information into the feature points of
the database, so that changes in lateral position can be
triangulated, and therefore lane recognition performed

We show that ego-localization and lane recognition can
be achieved using only a single in-vehicle camera and a pre-
constructed database. We demonstrate the performance of our
system in a typical urban traffic environment, and show that
using feature scale changes is a robust way to find the closest
database image and therefore localize the current image. The
use of a database with 3D feature point information allows
us to reliably perform lane recognition.

This paper is organized as follows: In Section II we give a
brief overview of related research. We describe the proposed
method in more detail in Section III and experimental results
are presented in Section IV. We discuss the results in Section
V before concluding in Section VI.

II. RELATED WORK

The ego-localization problem is one shared by automo-
tive applications [5], [6], [8], and robotics [1], [10] where
it is more often posed as the Simultaneous Localization
and Mapping (SLAM) problem [11]. SLAM has been a
very active research area in the robotics community where
unknown environments must be mapped as the robot is
localized within the dynamically updated map. There have
been several successful adaptations using monocular vision
[10], [12], [13], which employ visual odometry by way of
structure from motion to monitor camera movement and
current localization. These methods typically use extended
Kalmann filter based [12] or, more commonly, pose graph
approaches [10], [13]. SLAM localization methods do not
easily scale to the large environments that are typical of
automotive applications, where the vehicle position within a
known map is of interest rather than self-localization relative
to a map of previously visited areas.

For automotive ego-localization, similar monocular meth-
ods have been employed which separate the mapping step
from localization by using a pre-constructed database [5],
[8] or image databases such as Google Street View [14].
These methods perform complete localization relative to
the database images, which can enable high accuracy—for
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example, up to 10 cm precision when combined with an IMU
[5]. They also usually employ supporting sensors to achieve
localization—either an IMU [5] or odometry information
[14]. A simpler approach is to localize against the closest
database image, of known location, using DTW (or Dynamic
Programming) to remove temporal differences between input
and database image streams [6], [15]. The matching between
sample images and those in the database can be performed
by using a kind of template matching [15], or by using a
low bit-rate image sequence instead of single images [16],
which is stable in varying environments but does not provide
high localization accuracy. Novel feature based methods have
also been proposed [7], where the epipole calculated from
matched features between images is tracked. The method
introduced in reference [7] uses the position of the epipole
as a cost measure for comparing image positions. The epipole
moves away from the vanishing point as the image positions
become similar. While effective, this technique requires the
calculation of the fundamental matrix so can be unstable
when the baseline between the query and database images is
small. The above Dynamic Time Warping based methods do
not calculate the lane position relative to the database images.
This has been attempted to be solved by using two cameras
and triangulation [6]. Image matching is also performed by
some SLAM methods for loop closure, demonstrated effec-
tively using Bag of Features [13]. While these techniques are
effective at matching similar images, they are not capable of
spatially arranging them in order without complete frame-
by-frame visual pose estimation.

III. PROPOSED LOCALIZATION METHOD

This paper describes a method of ego-localization using
a pre-processed image database. Images captured by an in-
vehicle camera in the localization step are compared to
images from the database using DTW to compensate for
speed differences in the two image streams. If two images
have the same viewing direction, their corresponding SURF
feature points will have a similar scale when the capture
positions were spatially close. As distance between the
images increases, the difference in corresponding feature
scales also increase. The proposed method makes use of
this change to match images between the input image and
the database, therefore localizing the input image in the
direction of motion. Only the scale change between the
matched features is used, so there is no need to calculate
fundamental matrices. This allows matching even when the
baseline between input and database images is small.

Lane recognition is performed by using the change in
pixel co-ordinates of the features in the input image when
compared to the corresponding features of the matched
database image. The pixel co-ordinate change and known
3D points of the features from the database image are used
to estimate the lateral translation between the two images
and therefore recognize the vehicle’s current lane.

The process is described in more detail below. Section
A describes the database construction step, and Sections B
and C detail the implementation of the database relative
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Fig. 1. A flow chart outlining the proposed method. The two main stages
are 1) database construction, and 2) ego-localization by DTW matching the
images from the vehicle to be localized to the database image stream.

localization and lane recognition, respectively. An overview
of the proposed system is presented in Fig. 1.

A. Database Construction

The database used by this method consists of series of
images with corresponding world locations for each image.
Each image has a set of extracted SURF features, and 3D
world positions for each feature. The database construction
step is performed only once, and the resulting database is
then used as a map for localization. GPS localization data
for each image is included in the database.

The database construction step follows a method fairly
similar to standard visual odometry and visual SLAM tech-
niques [5], [10]. SURF features are extracted from the
captured images. Feature matching is performed between
spatially close images with each new image being matched
to the nearest six images. The feature matches are pruned
using RANSAC and geometric constraints. The 3D locations
of all of the feature points are calculated using a Pose N -
Point algorithm based on Levenberg-Marquardt optimization
[17]. A sparse bundle adjuster [18] refines matches and also
determines the camera coefficients, calculating 3D feature
points to minimize re-projection error. As a new database
image is entered, it is used to create a new bundle with the
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Fig. 2. The cost measure used for DTW matching (summed scale) for a
sample image. The correct image match is database frame 0 in this graph.

next closest images, and the 3D locations of its feature points
are calculated.

The completed database is a series of images with cor-
responding camera positions and SURF keypoints with de-
scriptors. Each SURF feature which has a corresponding
calculated 3D location is referenced to a point in a database
of 3D world points; naturally each world point has been
constructed from many different database images.

B. Localization

The localization requires only the pre-constructed database
and input images from an in-vehicle camera. The localization
process can be broken into two main steps:

1) SURF feature extraction and matching
2) Sequential image matching to the database images using

summed scale of SURF points and DTW matching
The result is a 2D position for the camera for the current

image, corresponding to the closest database image location.
1) SURF feature extraction and matching: Extracted

SURF features are matched to features from the series of
the street map images, starting from the last matched image
in the sequence. The proposed method relies quite heavily
on a reasonable number of correct matches. To keep the
localization step simple and efficient, RANSAC pruning of
outlier feature matching is avoided. Instead, we propose
a simple weighted matching cost which matches features
based on known constraints. The views in both streams
are forward looking and the camera heights are considered
constant, so good image match candidates will have similar
y pixel coordinates and a limited change in scale and feature
response. Based on these properties, a weighted criteria
is used for determining likely inlier matches. A spatial
constraint is applied so that each potential match candidate is
only searched for in a region with pixel values close to where
the feature was located in the query image, particularly in the
y direction of the image plane. The candidate features must
also be from the same octave. Then the best match for the
query image feature fτ is calculated by finding the database

image feature fi within the set of N features i = 1, 2, ..., N
which minimizes the following equation:

m(i) = ws|s(fτ )− s(fi)|+ wr|r(fτ )− r(fi)|
+wd(SSD(fτ , fi)),

(1)

where s(f) is the feature scale, r(f) is the feature response,
and SSD(f1, f2) is the standard sum of squared differences
of the feature descriptors. The weights ws, wd, wr are ad-
justed to give a strong inlier set while maintaining a high
number of matched features.

2) DTW matching: DTW matching computes the cost
between the current input image and an arbitrary street map
image. We propose a cost measure based on the summed
scale of matched SURF features. Matched SURF features
that are extracted at the same octave [9] may vary in scale if
there is a translation between the two cameras; we make use
of the scale differences to match images which are closest
to each other. For a set of database images I1 = {t | 0 ≤
t ≤ T1} and input images I2 = {τ | 0 ≤ τ ≤ T2} we
take the latest input image I2(τ) for localization. A subset
of the database images, Ĩ ⊂ I1 → t̃ ∈ Ĩ is selected for cost
minimization. This is done by calculating the input image
feature matches with sequential database images, starting
with the previously matched database image and continuing
until the number of matched features falls below a threshold.
Within the resulting subset of database images, only the
individual feature matches that are consistent throughout the
whole subset are used. This results in a set of Nt̃,τ matched
features f in each subset database image Ĩ(t̃) and the input
image I2(τ). The cost of each image match g(t̃, τ), is
calculated by summing the absolute feature scale differences
as follows:

g(t̃, τ) =

Nt̃,τ∑
i=0

|s(ft̃,i)− s(fτ,i)|, (2)

where s(f) is the scale parameter extracted from the relevant
SURF feature. The database image which minimizes g(t̃, τ)
is deemed to be the closest location to the input image,
providing localization in the direction of motion. Fig. 2
shows the cost of a sample image against a series of database
images.

C. Lane Recognition

The ego-localization method described above provides
localization in the direction of motion. However, variation
in the lateral positioning of the vehicle is also of interest,
particularly when considering navigation applications where
the current lane may be of importance. We propose lane
recognition and approximate lateral localization using the
same SURF features that were used previously without
requiring a complete triangulation or visual pose estimation.
Fig. 3 illustrates the lane recognition problem.

For lane position tracking, we assume that the database
relative localization has been successful and accurate. We
return to using all of the feature matches between the current
input image and the database image that we previously
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Fig. 3. Illustration of the localization process when the database and input
image stream lanes are different.

selected by DTW matching. The following assumptions are
made for typical traffic situations:

- Variation in orientation between the two views is purely
in the x direction of both image planes

- Both images were captured with the camera facing in
the direction of primary motion

- The height of the camera is constant between image
streams

We have previously calculated the 3D world positions of
feature points in the database. An example world point xw
will be projected to pixel points xdb and xτ for the database
and input image planes respectively. More generally, if we
include the camera matrix K and the relative motion between
the two images described by the rotation matrix R and
translation vector T, xτ

yτ
1

 = K[R|T]


xw
yw
zw
1

 , (3)

where we consider here, for convenience of notation, that
the world point has been transferred into the co-ordinates
of the database image. The camera intrinsics matrix K
has been previously calculated in the database construction
step. Asserting the above assumptions, the motion can be
separated into a simple translation in the x direction, ∆x.
This allows Eq. (3) to be arranged to calculate ∆x using the
3D world points from the database, (xw, yw, zw), and the
pixel x location of the matched feature, xτ , as follows:

∆x =
1

fx
(zwxτ − fxxw − syw + u0zw) (4)

where fx, s, u0, are parameters from the calibration matrix.
The value of ∆x is averaged over all of the matched features.

TABLE I
IMAGE SEQUENCES

Sequence Road lanes used

DB (database) Left only

A Left only

B Right only

C Both (3 lane changes)

When the averaged value reaches a threshold, it signifies a
lateral motion approximately equal to the lane width allowing
recognition of the lane through which the vehicle is currently
travelling.

IV. EXPERIMENTS

Testing of the proposed method was carried out in an urban
environment which included a variety of buildings, traffic,
lighting variations and lane changes.

The database and ego-localization streams were captured
using a Canon iVIS HF G20 video camera attached to the
inside windscreen of the vehicle, facing forwards. Images
were captured at a rate of 23.97 frames per second, at varying
speeds up to 50 km/h. Images were captured in color but
later converted to grayscale. Several passes were made of
the same stretch of road (over about 1 km). Table I gives a
summary of the lane positions of the road passes. All passes
were completed within the same day, with varying lighting
and traffic conditions.

The database construction gives a theoretical potential lo-
calization accuracy of about 60 cm, when captured at 50 km/h
and 23.97 frames per second. GPS capable of this level of
accuracy was not available for the database construction, so
it is difficult to quantify the exact precision achieved by
localizing each image from the structure from motion and
bundle adjustment process. However, with the correct sensor
suite, it should be quite possible to construct a database with
a high accuracy for image localizations. Therefore, we focus
on the performance of the ego-localization relative to the
database images.

For the following results, sample images were taken from
each image sequence and visually compared to check for
correct matching. For each sequence, 300 images were
sampled. The samples were chosen by randomly selecting ten
sets of 30 successive images. This sampling method was used
so that lane changes and partial lane changes were sampled
and represented in the results.

A. Ego-localization in the Direction of Motion

The sequential image matching by DTW matching of
SURF scale changes was evaluated on all input image
sequences. The results are shown in Table II.

In Sequence A, when the vehicle was travelling in the
same lane as the lane used for database construction, lo-
calization error was consistently lower than two frames
(matched to an image within two frames of the correct
database image). Image matching was exact, corresponding
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to an accuracy of 60 cm, 94% of the time. For Sequence B,
where the vehicle was in a different lane to the one used in
database construction, the exact frame matching rate fell to
82% but was always within four frames. It was noted that
where incorrect image matching occurred, the system quickly
recovered to higher frame recognition rates, with incorrect
matches always corrected within four frames. While the
constant lane image sequences showed high correct match
rates and therefore high localization accuracy, in Sequence C
where lane changes occurred, there were some mismatches
as the vehicle changed lanes. Even where an exact match
was not found, the result was always within six frames.
It appears that the mismatches that occurred during lane
changes were caused by the change in viewing direction as
the vehicle moved into a different lane, so were particularly
apparent when the vehicle first started the lane change. As the
new lane was entered, the images were once again correctly
matched.

Localization relative to the database was also performed
using the inverse of the number of matched features for the
DTW matching cost, as a comparative method. The cost
measure in Eq. 2 was replaced with the following:

g(t̃, τ) = 1/Nt̃,τ . (5)

The image matching accuracy of the comparative method
is compared to the results of the proposed method in Fig. 4.
The use of feature scale is very effective for image matching
and localization when the view direction is constant. Using
the scale of matched features gives a more robust distance
measure between the input and database images, resulting in
better image matching performance. Sample image matching
for both the SURF scale method and number of matched
features method is shown in Fig. 5.

B. Lane Recognition Results

The lane recognition performance of the algorithm was
tested on all three image sequences. The results are presented
in Table III, which shows the percentage of correct lane
recognitions for each sequence. For Sequence A, no lane
changes relative to the database took place (both used only
the left-hand lane). The lateral lane localization system also
correctly determined that the lane was the same 100% of the
time. The lateral position was monitored and no significant
motion relative to the database was detected. For Sequence
B, the lateral positioning algorithm correctly detected that
the traversed lane was the right-hand lane throughout. There
were 15 images out of the sampled 300 where a lane change
was incorrectly detected as a result of outlier features being
used in the lateral positioning calculation. With monitoring
of previous image lane positioning, the erroneous lane recog-
nitions could be easily filtered, as the incorrect recognitions
only affected isolated images representing impossible lane
changes. In Sequence C, when the vehicle was between
lanes, the higher error in image localization as mentioned in
Section A resulted in a higher lateral localization error. Lane
recognition was successfully performed when the lane recog-
nition results stabilized as the vehicle completely entered the
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Fig. 5. Sample images showing DTW matching of images. The central
column is the database, and the one on left the corresponding matched
images using the proposed method. The column on the right shows the
matched images using the comparative method. The numbers in the top
right of the images are the sequence frame numbers, showing how DTW
matching absorbs differences in vehicle speeds between the database and
localization image sequences.

lane. There is ambiguity as to which lane the vehicle is in
when it is between lanes, so the presented lane recognition
results only include image samples from when the vehicle
was completely in a particular lane.

V. DISCUSSION

In this section we discuss the performance of the proposed
method and identify areas where improvements could be
made.

The lack of accurate ground truth data made it difficult
to quantitatively analyse the accuracy of the system. There
are a number of factors that affect localization accuracy.
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TABLE II
IMAGE MATCH RESULTS

Image match error (no. of frames)

0 (exact) <1–2 <3–4 <5–6

Sequence A 94% 100% 100% 100%

Sequence B 82% 94% 100% 100%

Sequence C 80% 88% 97% 100%

The camera frame rate and vehicle speed of the database
sequence determine the absolute accuracy of localization in
the direction of motion. Since the proposed system finds
the closest database match to an input query image, the
finer the spacing of the database images (and the more
accurately their positions are known), the higher the accuracy
of localization. Future research will include the construction
of datasets with image capture positions known to a high
degree of accuracy, using a suite of sensors such as GPS
and odometry. This would allow better analysis of the metric
accuracy of the system. We presented results in terms of
image matching accuracy, which was validated by visual
checking of matches; performance in terms of metric error
when compared to a ground truth would be preferable.

For lane recognition, the accuracy is highly dependant on
the precision of the localization in the direction of motion.
The accuracy considerations for localization in the direction
of motion are also relevant for lateral positioning. The aver-
age lane width of roads in the sample image sequences were
approximately 3.0–3.5 metres, so lane recognition requires
lateral positioning at a resolution not substantially different
from the typical accuracy of the image matching localization
on which it depends. Therefore the stability of the lane
recognition step could be greatly enhanced by a database
captured at a higher frame rate or slower speed. The image
sequences used for the experiments all included the use of
only two lanes. With a wider angle camera lens the system
could also be tested on three or more lanes.

VI. CONCLUSION

We proposed a method for ego-localization using summed
SURF scale changes across matched features as a cost mea-
sure for sequential image matching against a pre-constructed
database. Lateral positioning and therefore lane recognition
was achieved by including 3D feature point information in
the database. The experimental results show that a database
image matching accuracy within two consecutive images can
be achieved at a rate of 88% or higher. Lane recognition rates
vary between 84 to 100%. Future work includes improved
database construction and performance analysis using image
sequences with high accuracy GPS and odometry informa-
tion.
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TABLE III
LANE RECOGNITION RESULTS

Correct lane recognition rate

Sequence A 100%

Sequence B 95%

Sequence C 84%
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