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Abstract— Recently, pedestrian detection technology using
in-vehicle cameras or sensors are being developed, which
supports safety driving by notifying the drivers of the existence
of pedestrians. However, warning of all existing pedestrians
would interfere with the driver’s concentration. Therefore,
the driver should only be alerted of pedestrians with low
detectability to avoid distraction of his/her concentration. To
achieve this, it is necessary to develop a method to predict
the detectability of a pedestrian by the driver. This paper
proposes a method for predicting the pedestrian detectability
adaptive to the characteristics of the human visual field. We
prepared image features effective for the different regions of
the human visual field; central and peripheral, in order to
predict the pedestrian detectability correctly. To obtain the
ground truth of the pedestrian detectability, we conducted an
experiment by human subjects using image sequences captured
by an omnidirectional camera including pedestrians. From the
comparison between the output of the proposed method and
the ground truth of pedestrian detectability, we confirmed that
the proposed method significantly reduces the prediction error
in comparison with the existing methods.

I. INTRODUCTION

In recent years, advances in pedestrian detection technol-
ogy using in-vehicle cameras or sensors have led to the
development of driving assistance systems that can notify
the drivers of the presence of pedestrians. However, warning
the driver of all visible pedestrians could be confusing and
is thus prohibitive towards safe and comfortable driving.
Therefore, it would be useful to develop a method to predict
the detectability of pedestrians by the driver. Figure 1 shows
an example of the difference of pedestrian detectability.

Recently, estimation methods of the human eye character-
istics based on computer vision have been widely studied.
Itti et al. [1] proposed the “saliency map” consisting of
salient regions where humans may be attracted to look. It has
also been used for the segmentation of foreground objects.
Following Itti’s research, other research groups improved the
saliency map [2][3]. For example, Lee et al. [4] proposed a
method for the estimation of human visual attention in a
video sequence using a learning based saliency map.

As related to the saliency map, some researchers have
proposed methods for estimating the visibility of road ob-
jects. The visibility value represents that how a visual object
is easy to be recognized by drivers. Kimura et al. [5]
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Fig. 1. Example of the difference of pedestrian detectability. Pedestrian
(A) is near the camera, and is easier to detect. Meanwhile, pedestrian (B)
is far from the camera, and is more difficult to detect.

proposed a method for estimating the visibility of traffic
signals by evaluating the contrast of image features between
a traffic signal and its background. Likewise, Doman et al. [6]
proposed a visibility estimation method for traffic signs using
several image features, such as textures and appearances of
the target traffic sign.

Other research groups have proposed methods for predict-
ing the pedestrian detectability. The pedestrian detectability
is the probability of detecting a pedestrian by drivers. Engel
et al. [7] proposed a method for predicting the pedestrian
detectability using image features and the information of
objects on the road . Wakayama et al. [8] proposed a method
considering Visual Search [9] and pedestrian motion. They
used the saliency map as a map of visual distractors and
optical flow to represent the pedestrian’s motion. However,
these methods did not consider the influence of human
visual characteristics such as fields of view, color vision,
light adaptation, and so on. In practice, the human visual
characteristics strongly affect the pedestrian detectability.
Therefore, this paper proposes a method for predicting the
pedestrian detectability adaptive to the characteristics of the
human fields of view. The contributions of this paper are as
follows:

1) Propose image features effective for the central and the
peripheral fields of view.

2) Improve prediction accuracy by optimizing predictors
for the central and the peripheral fields of view.

In the following, section II describes the basic idea and the
details of the proposed method. Then, dataset construction
by human subjects using omnidirectional camera images are
reported in section III. Next, evaluation of the proposed
method is reported in section IV. Finally, we conclude this
paper in section V.
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II. BUILDING A PREDICTOR ADAPTIVE TO THE
CHARACTERISTICS OF THE HUMAN VISUAL

FIELD

A. Basic idea and overview of the proposed method

In this paper, we focus on the characteristics of the human
visual field. In general, the human visual field is separated
into two regions; the central and the peripheral fields of
view. The central field of view mainly contributes to visual
recognition. The cone cells which contribute to color vision
are distributed densely in this region. On the other hand,
in the peripheral region, humans cannot detect the color
difference. However, the rod cells which are more sensitive
to small difference of light than cone cells, are distributed
in this region. These characteristics of human vision affect
the pedestrian detectability. Therefore, we propose a method
for predicting the pedestrian detectability according to the
difference between the central and the peripheral fields of
view.

The proposed method extracts features effective for each
field of view and constructs predictors optimized for each of
them for predicting the pedestrian detectability.

Figure 2 shows the process flow of the proposed method.
The inputs are in-vehicle camera images, the positions of
pedestrians, and the driver’s eye gaze position. In this pa-
per, the proposed method assumes that the position of the
pedestrians are obtained by an external pedestrian detection
method [10]. Then, the proposed method calculates several
types of image features related to the pedestrian detectability.
Finally, the pedestrian detectability is predicted by SVR
(Support Vector Regression) [12] trained using these features.
The following sections describe the details of the proposed
method.

B. Image feature extraction

The proposed method uses several image features to
predict the pedestrian detectability. We assumed that the
image features which are effective for the prediction might
be different between the central and the peripheral fields of
view. Therefore, we prepared three types of image features
to represent the characteristics of the human visual field.

• Features for the central field of view
• Features for the peripheral field of view
• Common features for both fields of view

Table I shows the list of image features prepared for each
field of view. The following sections describe the details of
these features. Note that in this paper, the central and the
peripheral fields of view are defined as shown in Fig. 3.
Here, the range of the central field of view is defined as
20◦.

1) Features for the central field of view: In the central
field of view, a human can see objects in high resolution and
can detect the color difference. Therefore, difference of the
color and the texture of a pedestrian will strongly affect its
detectability. We represented these characteristics by contrast
features such as contrasts of luminance, color, and texture,
between the pedestrian region and its surrounding region.

Input images
Position of 

pedestrians

Computation of 

image features

Eye gaze 

position

Detectability

Central field 

of view

Peripheral field 

of view

Prediction by SVR

Fig. 2. Process flow of the proposed method.

TABLE I

LIST OF IMAGE FEATURES

Category Abbreviation Description
Features for
the central
field of view

Cµ(lum) Contrasts of luminance,
color (RGB), and textureCµ(RGB)

Ctex

Features for
the peripheral
field of view

Pmotion Movement of pedestrian region

Plum
Change of luminance of
pedestrian region

Cflow Contrast of optical flow
Common
features for
both fields of
view

Psize Size of pedestrian region
num Number of pedestrians
D(p, c) Distance from a pedestrian

region to the eye position,
and to the nearest pedestrian

D(p, p′)

The central field of view

The peripheral

field of view

20

Fig. 3. Definition of the central and the peripheral fields of view.

Pedestrian 

Region

Surrounding Region

Fig. 4. Definition of the pedestrian region and its surrounding region.
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The luminance contrast feature Cµ(lum) is calculated as

Cµ(lum) = |Pµ(lum) − Sµ(lum)|, (1)

where Pµ(lum) and Sµ(lum) are the average luminance values
of the pedestrian region and its surrounding region, respec-
tively. Here, the pedestrian region and its surrounding region
are defined as shown in Fig. 4.

The color contrast feature Cµ(color) is calculated as

Cµ(color) = ||Pµ(color) − Sµ(color)||, (2)

where Pµ(color) and Sµ(color) are the average color values of
the pedestrian region and its surrounding region, respectively.
Here, || || represents the Euclidean norm. In the proposed
method, the L*a*b* color space is used.

The texture contrast feature is extracted using a gray level
co-occurrence matrix. This feature is calculated as

Ctex =
k∑

a=0

k∑
b=0

(Mp (a, b)−Ms (a, b))
2
, (3)

where k is the size of the co-occurrence matrices, and Mp

and Ms are the co-occurrence matrices of the pedestrian
region and its surrounding region, respectively.

2) Features for the peripheral field of view: In the pe-
ripheral field of view, the rod cell can detect small light
difference. That is, this region is sensitive to objects’ motion
and brightness change. Therefore, the pedestrian’s motion
is expected to strongly affect the pedestrian detectability in
this region. We prepared the following three image features
to represent the pedestrian’s motion.
Pmotion is the horizontal distance of the target pedestrian’s

motion, calculated as

Pmotion = |Px(t+∆t)− Px(t)|, (4)

where Px(t) is the target pedestrian’s horizontal position
at the t-th frame. In the proposed method, the pedestrian’s
motion in a short period of time (∆t = 5 frames) is
evaluated.
Plum is the change of luminance in the pedestrian region,

calculated as

Plum = |Plum(t+∆t)− Plum(t)|, (5)

where Plum(t) is the average luminance in the pedestrian
region at the t-th frame. As shown in Fig. 5, we confirmed
that the luminance change of the pedestrian region represents
the pedestrian’s motion.
Cflow is the contrast feature of optical flow calculated as

Cflow =
1

N

5∑
i=0

|Pµ(flow)(t+ i)− Sµ(flow)(t+ i)|, (6)

where Pµ(flow)(t) and Sµ(flow)(t) are the optical flows in the
pedestrian region and its surrounding region at the t-th frame,
respectively.

t t+1 t+2 t+3 t+4Frame:

Fig. 5. Exmaple of luminance change of the pedestrian region.

3) Common features for both fields of view: We also
prepared image features effective for both fields of view.
In general, the closer a pedestrian exists, the bigger he/she
appears to the driver. Therefore we focused on the area of
the pedestrian region.

In addition to this feature, we focused on the locations
of the target pedestrian and the other pedestrians. In driving
situations, the more number of pedestrians exist, the more
difficult it becomes to recognize all of them correctly. Be-
sides, the human eye has a high resolution near the central
field of view compared to that of the peripheral field of
view. Therefore, we focused on the number of pedestrians,
the distance from the target pedestrian to his/her closest
pedestrian, and the distance from the target pedestrian to
the driver’s eye gaze.

C. Prediction of the pedestrian detectability

Detectability predictors are constructed by SVR. This
section introduces an overview of the construction phase and
the prediction phases.

1) Construction phase: The predictor is trained by using
pairs of feature values and the ground truth of the pedestrian
detectability. In addition, the proposed method aims to adapt
the characteristics of the human visual field. To achieve this,
the proposed method selects features effective for each field
of view and constructs predictors specific to each of them.
The RBF (Radial Basis Function) kernel is used in the SVR,
and LIBSVM [13] is used for training the SVR.

2) Prediction phase: In the prediction phase, image fea-
tures are extracted from images captured by an in-vehicle
camera. Then pedestrian detectability is calculated by using
the predictor specific for each field of view.

III. DATASET CONSTRUCTION

To construct a predictor for the pedestrian detectability, we
need the ground truth. Therefore, we performed an experi-
ment to obtain the ground truth of the pedestrian detectabil-
ity. Engel et al. [7] and Wakayama et al. [8] used an in-
vehicle camera to capture videos, and conducted experiments
with a single display to present videos to subjects. Then
they obtained the ground truth of the pedestrian detectability
based on its result. However, in the proposed method, since
we need to evaluate the characteristics of the human visual
fields of view, the angle of a single in-vehicle camera is not
sufficient. Therefore, we used an omnidirectional camera,
(Ladybug5 from Point Grey Research, Inc.), to capture
videos instead of an in-vehicle camera. The resolution of the
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Fig. 6. Example of an image captured by an omnidirectional camera.

Fix eye position Display images (200ms)
Display noise (1,000ms)

with digit (first 200ms)
Input response

(a) (b) (c) (d)

Fig. 7. Procedure to evaluate the detectability by a human subject.

180

(a) (b)

Subject

Displays

120 120

60cm

Fig. 8. Experimental setting. Three displays were used for the experiment.

videos was 5,760 × 1,200 pixels. Figure 6 shows an example
of the image captured by the omnidirectional camera.

We extended Engel’s experimental framework as follows.
Figure 7 shows the procedure of the proposed experimental
framework.

• Step (a): The subject is instructed to look at a certain
position indicated by a red cross.

• Step (b): The subject is shown a sequence of images
captured from an omnidirectional camera for 200 msec.

• Step (c): To reduce the influence of afterimage, the
subject is shown noise images for 1,000 msec. To keep
the subject’s eye gaze to the initial position during Step
(b), a random digit is displayed at the same position as
the cross for the first 200 msec.

• Step (d): The subject is asked to report the locations
of pedestrians which he/she had detected, and the dis-
played digit.

Prior to the experiment, the subjects were introduced to the
experimental procedure, and took exercises for three times
to get used to the task.

In the experiment, we assumed that the subject’s eye gaze
position was fixed to the initial position represented by the
red cross and a random digit. However, the human’s gaze
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Fig. 9. Distribution of the pedestrian detectability.

position could be attracted to a salient region and may move
to a different position from the initial position. Our research
focus on the mechanism of human recognition without visual
search. Therefore, the random digit was displayed in order
to confirm that the subjects’ eye gaze was fixed to the initial
position during Step (b).

We performed this experiment with 13 subjects (11 males
and 2 females) in their 20s. Finally, the ground truth of the
pedestrian detectability was calculated as the ratio of correct
answers by all subjects. In this experiment, we prepared
150 images. The number of pedestrians in each image was
between 0 and 5, and 299 pedestrians in total were observed
in them without occlusions.

Figure 8 shows the actual setting of the experiment. We
showed the video to each subject on three 27 inch (wide)
displays.

Figure 9 shows the distribution of the pedestrian de-
tectability by the angle of view formed between the pedes-
trian position and the subject’s gaze position. From this
result, we can say that drivers can detect pedestrians in their
central field of view better than their in peripheral field of
view. In addition, we can see that the detectability gradually
decreases according to the increase of the angle of view
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Pedestrian A 0.08     

Comparative 0.33 (0.25)

Proposed 0.26 (0.18)

Pedestrian B 0.77     

Comparative 0.57 (0.20)

Proposed 0.76 (0.01)

Pedestrian C 0.31     

Comparative 0.50 (0.19)

Proposed 0.40 (0.09)

Pedestrian D 0.08     

Comparative 0.21 (0.13)

Proposed 0.13 (0.05)

(a) Example with four pedestrians.

Pedestrian E 1.00     

Comparative 0.89 (0.11)

Proposed 0.91 (0.09)

Pedestrian F 0.62     

Comparative 0.25 (0.37)

Proposed 0.57 (0.05)

Pedestrian G 0.23     

Comparative 0.15 (0.08)

Proposed 0.17 (0.06)

(b) Example with three pedestrians.

Fig. 10. Examples of prediction results. The cross indicates the fixation point. The first row in each table shows the ground truth of the pedestrian
detectability. The second and third rows show the predicted value by the comparative method and the proposed method. The numbers in parentheses
represent the prediction error (MAE).

formed between the pedestrian position and the driver’s gaze
position.

IV. EVALUATION AND DISCUSSIONS

To evaluate the proposed method, we compared the out-
put of the proposed method with the ground truth. We
constructed predictors for the central and the peripheral
fields of view. Table II shows features effective for each
field of view from the ten features introduced in section
II, which were selected by a greedy algorithm. Using the
predictors optimized for each field of view, we evaluated
the performance of the proposed method by 10-fold cross
validation. To evaluate the effectiveness of adaptation to the
human visual field, we compared the prediction accuracy
between the proposed method and a comparative method.
The comparative method used a single predictor optimized
for predicting general pedestrian detectability, in a similar
way to [7] and [8].

Figure 11 and Table III show the comparison of the
prediction error (Mean Absolute Error: MAE) between the
proposed method and the comparative method. Figure 10
shows examples of the comparison of the prediction accu-
racy. Since pedestrian (A) in Fig. 10 (a) appears large, it may
be easy to detect. However, since the position of pedestrian

TABLE II

COMPARISON OF FEATURES THAT WERE EFFECTIVE FOR THE

PREDICTION

Features
Fields of view

Central Peripheral
Cµ(lum) ✓ ✓
Cµ(color) ✓ –
Ctex – –
Cflow ✓ –
Plum – ✓
Pmotion – ✓
Psize – –
num – ✓
D(p, c) ✓ ✓
D(p, p′) – ✓

(A) is at the edge of the driver’s visual field, it may be
difficult to detect. Meanwhile, the position of pedestrian (F)
in Fig. 10 (b) is almost the same with that of pedestrian (C).
However, the detectability of pedestrian (F) is higher than
that of pedestrian (C). This might be because pedestrian (F)
is running, while pedestrian (C) is walking. Thus, the features
of pedestrian’s motion is effective for the prediction in the
peripheral field of view.
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Fig. 11. Comparison of the prediction error for each angle of view.

TABLE III

COMPARISON OF THE MAE BETWEEN THE PROPOSED METHOD

ADAPTIVE TO THE CHARACTERISTICS OF HUMAN VISION AND THE

COMPARATIVE METHOD

Methods
Fields of view

Central Peripheral
Comparative 0.200 0.269
Proposed 0.149 0.195

Table II shows the comparison of effective features for
each field of view. For the prediction in the central field
of view, the color feature Cµ(color) was effective while this
feature was not effective for prediction in the peripheral
field of view. For the prediction in the peripheral field of
view, the features Cflow and Plum which represent the target
pedestrian’s motion were effective. Cflow was also effective
for prediction in the central field of view. From these results,
as we expected, the effective features were different between
the central and the peripheral fields of view.

From this evaluation, we confirmed that the proposed
approach that considers the characteristics of the human vi-
sual field significantly contributed to improve the prediction
accuracy. However, the accuracy of the proposed method in
the peripheral field of view was slightly worse than that in
the central field of view, as shown in Fig. 11. We consider
that this is because there are many variations of pedestrians’
appearance and position in the peripheral field of view. The
number of training data for the peripheral field of view might
have been insufficient in the experiment. To improve the
prediction accuracy for pedestrians in the peripheral field of
view, we need to prepare more training data.

V. CONCLUSION

This paper proposed a method for the prediction of the
pedestrian detectability adaptive to human visual character-
istics, especially for the central and the peripheral fields of
view. The proposed method extracts image features related
to the central and the peripheral field of views. Optimized
predictors for each field of view were used for the prediction.
Evaluation results showed that the approach that considers
characteristics of the human visual field was effective for the

prediction of the pedestrian detectability. In future works,
we will evaluate the influence of ego-vehicle speed and the
driver’s age to the pedestrian detectability, since they were
reported by Roge et al. that they influence the range of visual
field [14]. We will also investigate features that can represent
other human visual characteristics. In addition, the prediction
method needs a larger pedestrian image dataset to adapt the
variety of their appearance. Therefore we will conduct an
experiment with more subjects and more captured images.
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