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Abstract. A novel probabilistic framework is proposed for inferring gaze patterns and the struc-
ture of conversation in face-to-face multiparty communication, based on head directions and the
presence/absence of utterances of participants. First, we define three classes of conversational
regimes, which are characterized by the topology of the gaze pattern; we assume that they indicate
the structure of the conversation, i.e. who is talking to whom. Next, the problem is formulated as
joint estimation of both regime state from the gaze pattern and utterance, and the gaze pattern
from head directions. We then devise a dynamic Bayesian network, called the Markov-switching
model. The regime changes over time are based on Markov transitions, and controls the dynamics
of the gaze patterns and utterances. Furthermore, Bayesian estimation of regime, gaze pattern, and
model parameters are implemented using a Markov chain Monte Carlo method. Experiments on
four-person conversations confirm accurate gaze estimation and the effectiveness of the framework
toward identification of the conversation structures.

1 Introduction

Face-to-face conversation is one of the most basic forms of communication in our life and is used for con-
veying/sharing information, understanding others’ intention/emotion, and making decisions. To enhance
our communication capability beyond conversations on the spot, intense research efforts are being made
to enable teleconferencing, archiving/summarizing meetings, and computer-mediated communication as-
sociated with social agents/robots. To achieve such prospective applications, the automatic recognition of
conversational scenes, which involve interactive human behavior both physically and psychologically, is a
basic technical goal. Our study aims to develop a novel framework for analyzing and understanding mul-
tiparty face-to-face conversation by modeling the relationship between the structure of the conversation
and the nonverbal behavior that appear in it.

Automatic meeting analysis is an emerging research area, and several methods for the recognition
of group actions in meeting have been proposed [1, 2]. However, so far, relatively little attention has
been paid to the basic structure of conversations, known as participation roles (speaker, addressees,
side-participants, etc.) [3], i.e. who is talking to whom. The identification of participation roles is a
particularly important function for services such in automatic video summarization/editing and the
social-participation robots that are expected. In the face-to-face setting, it has been suggested that the
nonverbal behavior play important roles in the conversation, although verbal information is essential.
Among various nonverbal behavior, it is widely acknowledged that gaze serves several important functions
such as monitoring others, expressing one’s attitudes/intentions, and regulating conversation flow [4, 5].
Based on these psychological findings, it is suggested that since people use gaze behavior as an important
cue for understanding the participants’ roles in a conversation, it should be possible to automatically
determine roles by analyzing people’s gaze [6, 7].

To analyze gaze behavior during conversations precisely and quantitatively, it is necessary to realize
the automatic measurement of gaze direction in a manner that does not interfere with natural conversa-
tion. Unfortunately, the current level of eye tracking techniques fails to meet such requirements, despite
recent progress [8, 9]. Instead, an approach that substitutes head direction for eye direction has been
proposed [10, 11], since recent face tracking techniques make it easier to measure head direction than
gaze [12]. This approach is based on the theory that a person tends to focus his/her attention on the
person of interest by centering the person in his/her visual field, which results in rotation of head and/or
torso, depending on the positions of other participants.

Our study unifies the above two aspects, i)the link between the structure of conversations and nonver-
bal behavior, and ii)gaze direction can be approximated by head direction, and formulates a framework
for simultaneously solving two problems: inferring the structure of conversations from gaze pattern and
utterance, and identifying gaze patterns from ambiguous head-direction measurements. To that end,
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first, we define three classes of conversational regimes, which can be characterized by the topology of the
gaze pattern, and are assumed to indicate the structure of conversations. Next, the problem is formulated
using the dynamic Bayesian network called the Markov-switching model [13]. The regime state changes
over times based on Markovian transition properties, and it controls the dynamics of utterance patterns
and gaze patterns, which stochastically yield head-direction measurements. Furthermore, a Bayesian es-
timation of the joint posterior distribution of all unknowns consisting of regime states, gaze patterns,
and model parameters is implemented with the Markov chain Monte Carlo method, called the Gibbs
sampler [14]. Experiments using 4-person conversation were conducted to confirm the effectiveness of the
method. So far, a hidden Markov model (HMM) and its derivatives like coupled-HMM [15] have been
developed for the recognition of human interaction. However, in contrast to these models, which mainly
focus on direct causal relationship between visible human actions, our study tries to explore another
aspect that hypothesizes a high-level process that governs how people interact within a social context.

This paper is organized as follows. Section 2 defines the conversational regimes. Section 3 proposes
the model and estimation algorithm. Section 4 shows experimental results. Finally, some discussion and
our conclusion are presented in Section 5.

2 Conversation Structures and Gaze Patterns

This study aims to develop a framework for the automatic estimation of the structure of multiparty
conversation from nonverbal behavior, which can be extracted from audio and visual information. As the
structure of conversation, we target participation role such as speaker, addressees, and side-participants
[3], i.e. who is talking to whom, and who is listening to whom, and the dynamics of how the structure
changes over time. To that end, we hypothesize that the stream of a conversation can be segmented into
a series of short periods, we call regimes, which satisfy two conditions: i) a specific type of nonverbal
behavior is continuously present during the regime, and ii)each regime corresponds to a kind of con-
versation structure, and its temporal changes represent the dynamics of conversations. If such regimes
could be extracted and well-defined, the structure of a conversation could be identified by observing and
analyzing the sequence of nonverbal behavior. As the nonverbal behavior, we focused on the gaze pat-
terns of participants, and found that there exist a typical topology of gaze patterns during conversations,
which frequently appear and have larger temporal scales than individual gaze directions. Moreover, our
experimental results suggest a strong link between gaze topology and the conversational structures such
that gaze-based video editing can facilitate the viewer’s understanding of recorded conversations [16].
Based on these observations, this paper hypothesizes three categories of conversation regimes according
to the topologies of gaze patterns: convergence, dyad link, and divergence.

First, the regime called “convergence” corresponds to the gaze pattern in which the gazes from
participants converge to one person, i.e. there is one person attracting the others’ gazes more than the
others, as illustrated in Figure 1(a). This regime corresponds to the conversation structure that one
person talks to the others and they look at and listen to the speaker, where the person in center of gaze
convergence is the speaker, and the others are the addressees. Here, we denote the regime as RC

i , where i
indicates the center person. This regime is related to past findings such “people gaze more while listening
than while speaking”[5].

Second, the regime called “dyad link” corresponds to the situation that two people look at each other,
i.e. mutual gaze, as illustrated in Figure 1(b). During the regime, they exchange messages and could swap
their roles of speaker and addressee; the others are side-participants. This regime often appears during
turn taking/giving, and is related to findings that “speakers ended an utterance with prolonged gaze to
indicate that it was the turn of one listener to speak” [4, 17]. This regime is denoted as RDL

(i,j), where
(i, j) represents the pair forming the dyad link.

Third, the regime called “divergence” corresponds to the gaze patterns that do not match the above
two regimes, i.e. people look in different directions, as shown in Figure 1(c). In this regime, group
conversation does not occur. This often occurs before a conversation starts or at a break point between
topics. This regime is denoted as R0.

3 Model and Estimation

3.1 Notations

This study targets N -person face-to-face conversations(N ≥ 3). The participants are separately seated in
chairs, and no one leaves/enters during the conversation. No tools such as notes or whiteboards are used
so as not to disturb the attention of the participants. Gaze direction was discretized to N exclusive states:
look at the face of one of the other participants or avert from all of them. Let Xi,t be the gaze state of
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Fig. 1. (Left)Typical gaze patterns in each regime: (a)convergence, (b)dyad link, (c)divergence, in the case of
4-person conversation, (node: person, edge: gaze direction, node without outgoing edge: averted gaze).

Fig. 2. (Right)Graph representation of structure of Markov-switching model.

person i; looking at person j if Xi,t = j, (i 6= j) or avert if Xi,t = i, at time step t. We call the set of gaze
states of all participants the gaze pattern, Xt = {X1,t, X2,t, · · · , XN,t}, which takes one of NN possible
patterns. The sequence of gaze pattern is denoted by X1:T = {X1,X2, · · · ,XT }. Let St be the regime
at time t; it is one of M -regimes as St ∈ R = {RC

i |i = 1 · · · , N} ∪ {RDL
(i,j)|i = 1, · · · , N, j = i, · · · , N, i ≤

j} ∪R0, where M = N + NC2 + 1. The sequence of regimes is represented as S1:T = {S1, S2, · · · , ST }.
At each time step t, the head direction hi,t of each person i is observed as azimuth angle between

world coordinate X and frontal direction of face, as shown in Figure 3(a). We denote the sequence of
observed head directions as H1:T = {H1, · · · ,HT },Ht = {h1,t, · · · , hN,t}. Also, state of utterance is
denoted by ui,t = 1 if person i utters and ui,t = 0 if person i is silent, at time t; the resulting sequence
is represented as U1:T = {U1, · · · , UT }, Ut = {u1,t, · · · , uN,t}.

3.2 Model structure

To model the relationship between variables and their temporal evolution, a class of dynamic Bayesian
network called the Markov-switching model is defined as shown in Figure 2. In Figure 2, nodes represent
variables and edges represents dependencies between variables. This model includes regime sequence S1:T

and the sequence of gaze patterns X1:T ; both of them are considered to be hidden random variables.
Here, regime dynamics is assumed to be a first order Markov process with initial probability P (S0 = R) =
π0,R, R ∈ R and transition probability P (St = R′|St−1 = R) = πR,R′ , which are constant over time.
These model parameters are denoted as πR = {πR,R′ |R′ ∈ R}, Π = π0 ∪ {πR|R ∈ R}. The sequence
of gaze patterns X1:T are stochastically generated and evolved depending on the emission/transition
probabilities P (Xt|St),P (Xt|Xt−1, St−1), conditioned on the regime state. The likelihood that a gaze
pattern Xt appears is given as the product of emission probability P (Xt|St) and transition probability
P (Xt|Xt−1, St−1), as written in

P (Xt|Xt−1, St, St−1) = P (Xt|St)P (Xt|Xt−1, St−1) (1)

P (Xt|St) =
∏N

i=1P (Xi,t|St), P (Xt|Xt−1, St−1) =
∏N

i=1P (Xi,t|Xi,t−1, St−1), (2)

where we assume the conditional independency of gaze directions of each person for a given regime
state. Here, we denote gaze-related model parameters as P (Xi,t = j|St = R) = θR,i,0,j , P (Xi,t =
j|Xi,t−1 = k, St−1 = R) = θR,i,k,j , θR,i = {θR,i,k,j |k = 0, · · · , N ; j = 1, · · · , N}, Θ = {θR,i|R ∈ R, i =
1, · · · , N}. Also, the model includes observation processes that stochastically yield both head directions
with probability P (Ht|Xt) conditional to the gaze patterns, and utterance patterns with P (Ut|St) for
given regime state, at each time step t. We assume all observations at each time step are independent,
and also head directions and utterances are independent. Likelihood function of head direction Ht for
given gaze pattern Xt is defined using Gaussian distribution so as to reflect uncertainty in head direction,
as written in

P (Ht|Xt) =
∏N

i=1p(hi|Xi), p(hi|Xi = j) = (2πσ2
i,j)

−1/2exp
[−(µi,j − hi)2/(2σ2

i,j)
]
, (3)

where µi,j , σ2
i,j are the mean and variance of the likelihood distribution when person i looks at j,

respectively. Also, the independency of head directions of each person for a given gaze pattern, and the



temporal invariance of these parameters are assumed. Also, the likelihood of utterance pattern is defined
as P (Ut|St) =

∏N
i=1 P (ui,t|St), where we assume the utterance of each person at a time step occurs

independently but conditional on regime state, and is generated by a Bernoulli process with utterance
probability P (ui,t = 1|St = R) = ηR,i.

3.3 Bayesian estimation via Gibbs sampling

Based on the model proposed, the problem is to estimate the regime sequence S1:T , gaze pattern
sequence X1:T , and model parameters ϕ = {Π, Θ, {µi,j}i,j , {σ2

i,j}i,j , {ηR,i}R,i}, from measurements
Z1:T = {H1:T , U1:T }. We employ a Bayesian approach to estimate the joint posterior distribution
p(S1:T , X1:T , ϕ|Z1:T ) of all unknown variables for given measurements. In Bayesian analysis, a priori
knowledge about the model is represented as the prior distributions of model parameters. To estimate
the joint posterior, this study uses a Markov chain Monte Carlo method called the Gibbs sampler [14],
which has an advantage when dealing with complex models. The Gibbs sampler repeatedly generates
random samples from the full conditional posterior distributions of each unknown variable, which consti-
tute a Markov chain whose invariant distribution equals the desired joint posterior. The joint posterior
distribution is approximated by a set of random samples after the Markov chain has converged.

This study employs natural conjugate prior distributions [18]. Dirichlet distributions are used for the
initial and transition probabilities of the regime state, and for emission/transition probabilities of gaze
pattern. Priors for head-direction employ Gaussian distributions and inverse chi-squared distributions
for mean and variance of its likelihood, respectively. Beta distribution is used for priors of utterance
probabilities. Also, full conditional posterior distributions of each variable have the same function form
as its priors. Gibbs sampling iterates a set of procedures N times, and in each step, each variable is
sequentially replaced by a new value that is sampled from its full conditional. For example, the regime
state St and the gaze pattern Xt are sampled from their full conditionals, respectively, as written in

P (St = R|S1:T \ St,X1:T , ϕ, Z1:T ) ∝ P (St = R|St−1)P (Xt|St = R)P (Ut|St = R)P (St+1|St = R), (4)
P (Xt|S1:T , X1:T \Xt, ϕ, Z1:T ) ∝ P (Xt|Xt−1, St−1)P (Xt|St)P (Ht|Xt)P (Xt+1|Xt, St). (5)

After the iterations terminate, statistics are calculated from the samples {S(q)
1:T , X

(q)
1:T , ϕ(q)} for iter-

ation steps q = N ′ to N to ensure convergence. For regime sequence and gaze sequence, the maximum
a posterior estimate is calculated as Ŝt = arg maxR∈R

∑N
q=N ′ δR(S(q)

t ), where δR(R′) = 1 if R = R′,
otherwise δR(R′) = 0. For other variables, the minimum mean-squared error estimates are calculated as
in µ̂ = (N −N ′ + 1)−1

∑N
q=N ′ µ(q).

4 Experiment

4.1 Recording data and initial setting

Data were recorded for 4-person group conversations. The participants were four women within the
same age bracket. They were instructed to have a discussion and try to reach a conclusion as a group
for a given discussion topic (“Is marriage and love same or different?”), within five minutes. The head
directions were measured at 30Hz with magnetic-based 6-DOF sensors (POLHEMUS FastrakTM), which
were attached to their heads with hair bands. Figure 4(a) shows the first 3600 time steps (=2[min]) of
head azimuth of each participant. Audio data were recorded with clip-on microphones attached to each
participant, and utterance intervals were manually extracted using a waveform editor. Figure 4(b) shows
the utterance intervals of each participant. Also, video sequences, whole shot (Figure 3(b)) and bust
shots (Figure 7(a)), were recorded at 30[frame/sec]. These data were synchronized and 10000 time steps
(=frames, ' 5.6[min] ) were used in the analysis. Ground truth of gaze direction at each time step was
manually created by watching the video sequences.

Hyper parameters for prior distribution were set based on the following policy. The bearing an-
gles ∆φi,j given by the relative positions of participants, were employed as the mean values of prior
distribution of head-direction likelihood (See Figure 3(a)). In regime ‘convergence’, the gaze-direction
distribution of the speaker is set to uniform, while others look at the speaker with high probability (0.7).
In regime ‘dyad link’, the pair look at each other with high probability (0.95), while the two others look
around randomly. In regime ‘divergence’, people look at various directions with uniform probability.

4.2 Results

Estimation results were obtained after N = 700 iterations of Gibbs sampling (N ′ = 500). Figure 5(a),
which shows the transition of the mean {µ1,j}4j=1 of head-direction likelihood distribution as a function
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Fig. 3. (Left)Overview of scene. (a)plan view of participants’ allocation, (b)whole view of participants.

Fig. 4. (Right)Observed data for 2[min], (a)head azimuth, (b)temporal intervals with utterance, for participants.

of iteration step number, shows that convergence was achieved. Figure 6(a) shows the estimation result
of gaze direction and the corresponding ground truth, illustrated for a 2[min] period. Average correct
ratio of the number of frames wherein estimates and ground truth coincide, was 71.1%. Most errors were
related to the ‘avert’ gaze status. This is because human can avert/turn their gaze from/on someone
without moving their head, e.g. using a sidelong glance. Also, the cause of the error can be explained
by Figure 5(b), which shows the estimated distributions of head-direction likelihood and histograms of
head direction for separate gaze directions. In Figure 5(b), both distributions exhibit significant overlaps
between that for averted gaze and those of the others. In addition, the average correct ratio of maximum
a posteriori estimates based on the ground truth of gaze direction was 68.8%. Given that our result from
‘unsupervised learning’ was better than one from ‘supervised learning’, it is suggested that the proposed
framework is an effective methodology for detecting gaze direction.

Figure 7 shows an example of regime transition; RC
4 → RC

(2,4) → RC
2 . Figure 7(a) shows bust-shot

images of each participant and Figure 7(b) shows gaze patterns. At first (t = 310), person 4 talked to
all others (P4:“Even if I am not thinking of marriage, I have to think about having relations, I mean..”)
and others listen to person 4. This form of conversation was indicated by estimated regime RC

4 . Next
(t = 485), person 2 responded to person 4 saying (P2:“Yes, yes, yes, yes, yes”) with nodding, and P4
looked at P2 to confirm the response from her. There was mutual gaze between person 2 and 4, which is
indicated by regime estimate, dyad link RDL

(2,4). Furthermore (t = 578), P2 keep on speaking (P2:“yes, in
terms of ever since”) and person 4 returned response back to P2 saying (P4:“yes, yes”) and then stopped
speaking, which indicated that P4 was offering the floor to P2. At the same time, person 3 turned her
gaze from P4 to P2, in order to watch what P2 would say. From the above results, it is confirmed that
the estimated regimes seem reasonable and could be used as an indicator of conversation structure.

5 Discussion and Conclusion

A probabilistic framework based on head directions and utterances was proposed for inferring gaze
patterns and the structure of conversations in face-to-face multiparty communications. To that end, we
devised the Markov-switching model, whose hidden states correspond to the regime and gaze patterns. A
Bayesian estimation of all unknown variables including model parameters is carried out using the Gibbs
sampler. Experiments on four-person conversations confirmed the effectiveness of our framework. As the
next step, it is necessary to evaluate the sequence of regime estimates by comparing them with actual
events that take place during conversations. Also, we need to increase the amount of data so that it
includes different people, different group size, and various actions. such as locomotion and note-taking.
The proposed framework can be extended to incorporate other human behavior such as head gestures
like nodding and shaking, facial expressions, and prosody. Furthermore, real-time online estimation and
image-based head tracking are required to develop practical applications.
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