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Abstract— We propose a weather recognition method from 

in-vehicle camera images that uses a subspace method to judge 
rainy weather by detecting raindrops on the windshield. 
“Eigendrops” represent the principal components extracted from 
raindrop images in the learning stage. Then the method detects 
raindrops by template matching. In experiments using actual 
video sequences, our method showed good detection ability of 
raindrops and promising results for rainfall judgment from 
detection results. 
 

I. INTRODUCTION 
Recently, driver assistance with computer and various 

sensors are being actively developed, especially in-vehicle 
cameras systems since such images contain important visual 
information. When driving, we visually recognize rapidly 
changing traffic conditions. The following are examples of 
driver-assisted systems that use video to impart traffic-related 
information: self-steering from white line recognition; distance 
adjustment between cars from leading vehicle recognition; 
automatic braking systems from pedestrian recognition; 
notification of traffic signs, and so on. Therefore image 
processing methods that enable such assistance systems are 
being pursued [1][2]. 

A close relation exists between driver assistance and weather 
recognition. Since in such adverse weather conditions as rain, 
snow, or fog, driving is more difficult than during fair 
conditions, accident rates dramatically increase. Weather 
changes temporally and spatially, so we believe that it is 
important to develop techniques that recognize weather in real 
time by sensors equipped in cars for driver assistance. 
Auto-wiping, braking assistance, and auto lighting fog lamps 
are examples of potential assistance systems to be realized by 
this technique. 

In this paper we focus on rain recognition, even though 
actually an auto-wiping system is already enabled for rain 
recognition using a so-called “rain sensor.” But employing a 
specific sensor for each purpose increases the number of 
sensors which is undesirable from the viewpoint of appearance, 
space, cost, and maintenance. Since raindrops scatter light, a 
rain sensor can detect rainfall by observing changes in the 

amount of light received from infrared rays with a LED. 
However, the detection region covered by the sensor is small, 
so it does not necessarily reflect changes in the visibility of a 
driver. On the other hand, an in-vehicle camera covers most of 
the driver’s visual field since it targets the entire windshield. 
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Hence we aim to recognize rainy weather by extracting the 
image feature characteristics of rain from in-vehicle images. 
Concretely, we propose the following methods in this paper: 

• Detection of raindrops on the windshield from 
in-vehicle camera images. 

• Assessment of rainy or fair weather from the results. 
As an image feature, we focused on raindrops on the 
windshield. . We used a subspace method to extract raindrops 
in order to detect changes of visual conditions during rain. In 
Section 2, we introduce works related to weather recognition 
using image analysis and pattern matching by a subspace 
method. We describe our proposed method in Section 3 and 
report experimental results in Section 4. Then we discuss the 
results in Section 5 and summarize this paper in Section 6.  
 

II. RELATED WORKS 
2.1. Weather recognition by image processing 

Works related to weather recognition by image processing 
include [3], who proposed a method based on physical models 
to improve the contrast of images under adverse weather 
conditions, especially foggy images. [4], which is also related 
to fog, attempts to evaluate visibility in foggy images by 
proposing a method that evaluates the relation between 
manually observed road visibility and image features of an 
image recorded by a digital still camera. This work makes use 
of a security camera along roads whose purpose is mainly for 
the administration of the road. However, since the purpose of 
our work is different, we mount an in-vehicle camera shooting 
forward. 

Heretofore rain weather recognition methods that use images 
have received little attention because it is easy to detect rain 
with a sensor. However, we believe that, for driver-assisted 
techniques, it is important to recognize rainy weather mainly 
from images that reflect visual conditions. 
 
2.2. Subspace method for pattern recognition 

In this paper, we use a “subspace method” widely used in 
pattern recognition fields. A subspace method extracts features 
using principal component analysis (PCA) from images that 



 
 

have common features and use them to match the patterns. 
   [5] proposes, for example, a parametric eigenspace method 
which continuously represents two-dimensional image 
fluctuations in response to the directions of three-dimensional 
objects or changes of light source as a manifold on the subspace 
(eigenspace), which is composed of image eigenvectors. In 
addition, [6] and [7] use the subspace method to recognize 
human faces. 

III. PROPOSED METHOD 
3.1. Overview 

In this paper, we detect raindrops on a windshield using 
image features from PCA that represent the essential characters 
of raindrops. Raindrop image features are defined as having the 
following characteristics: 

• Edges that feature a raindrop outline. 
• Blurry edges behind raindrops. 
• Refraction of light by raindrops. 

Raindrops have a uniform shape; any drop basically appears 
circular when seen through a windshield, and although a 
raindrop itself is clear and colorless, it is visible due to the 
reflection of its background as in Figure 1. Raindrop texture 
varies since the background reflecting them varies. However 
we believe that raindrops share at least the above features. 

Figure 2 shows the flow of our method. We propose two 
methods: 
[Method 1] Method 1 is composed of three stages: learning, 
detection, and judgment. We create a raindrop template, an 
“eigendrop,” in advance by PCA from images cut squarely in 
the learning stage. In the detection stage, we cut a rectangular 
area from the test set and compare it with the eigendrops. The 
rectangular area is shifted in a raster scan style. Finally, in the 
judgment stage, we assess the weather either as fair or rainy 
from the detection results. The concrete process is explained in 
detail in 3.2.. 
[Method 2] Method 2 restricts the target area for training and 
detection. This process is also described in 3.3. 
 
3.2. Method explanation 
A. Learning Stage 

First, as a training set, rectangles circumscribing each 
raindrop are cut manually from images of a windshield taken in 
rainy weather. Let these rectangles represent raindrop regions. 
A total of K images are prepared for training. Next, they are 
normalized in size to width W and height H, represented as 
1-dimentional vectors, which are then normalized so that they 
become unit vectors with means of 0, represented as: 

, where N = W× H. Let a matrix 
arranged by K randomly selected vectors from the test images 
be  and its covariance matrix be . 
We compute the largest R eigenvalues of Q and the 
eigenvectors  corresponding to them. A 
subspace made by these eigenvectors as bases are the 
eigendrops. 
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Fig. 1. Refraction of background to the surface of a raindrop on the 
windshield 
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Fig. 2. Flowchart 
 

 
Fig. 3. Objects whose characteristics resemble the image features 
of a raindrop 

 

(a) Streetlight (b) Car light (c) Windows in a    
remote building

 
 
B. Detection Stage 

Here, we explain the raindrop detection from the test images. 
In a test image, we focus on rectangular areas with the size of W 
x H. Let the area be represented by an one-dimensional 
normalized vector a. Next, we compute the degree of similarity 
S(a) with the eigendrops. S(a) is defined as: 
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We detect the area as a raindrop if S(a) is larger than a threshold. 
We detect raindrops in the test set by computing the degree of 
similarity with eigendrops while shifting the focused 
rectangular area. 
 
C. Judgment Stage  

We judge rainfall by counting the number of detected 
raindrops at the above stage. If the number of raindrops exceeds 



 
 

a certain threshold, we judge that it is raining and fair if it is not. 
 
3.3. Restriction of target area for raindrop detection 

In the preceding section, we did not restrict the target area for 
detection, as described in Method 1. However it needs further 
refinement to improve the detection accuracy. The advantages 
of the restriction are: 

• Suppression of false detection due to background 
texture.  

• Improved detection accuracy by extracting stable 
image features. 

• Reduction of computation time for template 
matching. 

Concretely, as the target area for detection, we extract the sky 
area assuming that, in that area, the background change is 
comparatively small. We did the same thing when making 
eigendrops in the learning stage in this method. 

Outside the sky area, if there are objects whose 
characteristics resemble the image features of raindrops as in 
Figure 3, false detection is possible in the detection stage. We 
also contend that in the learning stage the features extracted by 
PCA are unstable since a large part of the texture changes in the 
background contains many image features without raindrops. 
In addition, increasing the processing speed is a major goal of 
the restriction. 
 

IV. EXPERIMENTS 
In this section, we applied the proposed method to an image 

taken with an in-vehicle camera. We evaluated the accuracy of 
the raindrop detection and weather judgment using two images 
taken on different days. First we explain the process of each 
experiment and then discuss the results. 
 
 

 
Fig. 4. Examples of in-vehicle camera image in various conditions 
 
 

4.1. Experimental method 
We used the following two kinds of images for the 

experiment (Figure 4): 
[Data1] An image taken in winter when large raindrops 

were on the windshield. 
[Data2] An image taken in summer when a light rain 

was falling. 
We mounted a digital video camera to a car and took both 
images (30 fps, 640 x 480 pixels, grayscale). 
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Fig. 5.   Various raindrop images: (a)-(e) Cut from the sky area; 
(f)-(j) Other areas 
 

 

(b) Trained by raindrops from the sky area

1st : 45.6% 2nd : 13.8% 3rd : 8.6% 4th : 4.0% 

5th : 3.6% 6th : 3.1% 7th : 2.4% 8th : 1.8% 

1st : 36.0% 2nd : 13.5% 3rd : 7.6% 4th : 6.0% 

5th : 4.4% 6th : 3.7% 7th : 3.3% 8th : 2.7% 

(a) Trained by raindrops from the whole image

(c) Summer-Rain (d) Summer-Fair 

(a) Winter-Rain (b) Winter-Fair 

Fig. 6 . Eigendrops and their contribution rate: Raindrop regions 
were cut from (a) the whole image, or (b) the sky area.  
 
 



 
 

(b) Method 1 (see sky area)(a) Method 1 (see whole image) (c) Method 2 
Fig 7. Raindrops detected when both training and detection were applied to the whole image ( S(a) >= 0.78 ) 

Fig 8. Raindrops detection when both training and detection were applied only to sky area. ( S(a) >= 0.78 ) 

(b) Fair

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Rain (c) Wiping 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Change of number of detection by wiping 

 
 

We made eigendrops from each training image set and 
applied the raindrop detection to each frame of the input video 
sequence. Then we computed recall and precision ratios of the 
raindrop detection to be used as indicators of the detection 
accuracy. In the learning stage, we made eigendrops from 500 
raindrop images. Template matching in the detection stage was 
achieved by shifting templates (eigendrops) 1 pixel at a time. 

We also experimented rainy weather judgment using the 
results from the raindrop detection. First, we chose at random 
100 images of both fair and rainy weather. Next, we determined 
the threshold (the number of detected raindrops). Then the 
number of images judged as correct weather was counted. We 
observed changes of weather judgment by changing the 
threshold. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Before wiping (b) Wiping

4.2. Experimental results 
Figure 5 shows part of the raindrop images used for the 

experiment with data 2. Figure 6 shows the created eigendrops. 
The subspace dimension was six when they were made. 
With data 1, we obtained good results as exemplified in Figure 
9. Recall was 0.24 and precision was 0.87 in Figure 9(a). The 
recall and precision ratios represent the degree of detection 
failure and false detection, respectively; if the detector 
performs well, each ratio will be close to 1.0. 

With data 2, although we did not obtain good results using 
method 1, we obtained good results using method 2. Figure 7 
shows an example of results of the raindrop detection applied to 
data 2. With method 1, numerous false detections appeared 
near the boundary lines of objects as in Figure 7(a). However 
we can obtain good results when we observe only the sky area. 
Figure 10 compares the detection result between method 1 
restricted to the sky area and method 2. In general, the higher 
the recall ratio is, the lower the precision is. Although the 
precision in method 1 begins decreasing where the recall is 
around 0.3, method 2 keeps high precision even when the recall 
is close to 0.9. As seen in Figure 10, method 2 is always better 
than method 1. 

Figure 11 shows the results of fair or rainy weather 
judgments applied to the test set (data 2) while changing the 
detection number threshold, from the results of the raindrop 
detection by method 2. We judged the weather correctly by 
about 90 percents when the similarity threshold was set to 0.80 
and the detection number threshold was set to around 5, for 
example. 



 
 

 
Fig. 10. Accuracy of raindrop detection: When the number of 
ground truth raindrop areas is A, the number of detected raindrop 
areas is B: Precision = ，Recall = ．Numbers 
in boxes represent similarity thresholds. 
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Fig. 11. Success rate of rainfall judgment by the changing 
threshold (data 2, method 2): We used 100 images for both fair and 
rainy weather, and judged by the number of detected raindrops in 
each image. The three lines represent the graph of different 
similarity thresholds. 

 

V. DISCUSSION 
5.1 Detection accuracy and rainfall judgment 

First, we considered why detection accuracy was low when 
method 1 was applied to data 2. The 4th principal component in 
Figure 6(a), eigendrops, shows a strong edge feature in the 
vertical direction, and the 6th shows it in the horizontal direction. 
As a result, false detections occur since the similarity between 
eigendrops and the areas that include such edges increases as in 
Figure 7(a). Since raindrops are small and their edges are 
weaker in data 2 than in data 1 as in Figure 4, it is hard to 
recognize raindrop shapes in an area where the background 
texture is complex. For such reasons, we believe that the image 
feature of a typical raindrop were not clearly extracted. 

On the other hand, in method 2, which restricts the detection 
area, detection accuracy improved since the principal 
components were extracted stably as shown in Figure 10. 
However, the uses of method 2 are limited, since it is difficult to 
detect raindrops when the sky area is small.  
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Since in-vehicle camera images are sequential, raindrop 
positions are relatively stable and small compared to the 
background motion when driving if the camera is fixed. In the 
future, we plan to obtain stable raindrop features using 
inter-frame information. 

Rainfall judgment was mostly successful even if raindrop 
detection numbers were small, for example when the similarity 
threshold was set to 0.8. Since the recall ratio of raindrop 
detection using this threshold corresponds to only around 0.3 in 
Figure 10, rainfall judgment requires high precision ratio but 
not high recall ratio. This indicates that false detection should 
be minimized but, oversights are not crucial. Hence we believe 
that the raindrop detection method that we proposed is effective 
to judge rainy or fair weather. 
 
5.2 Judgment of rainy or fair weather at night 

In the previous experiments, our method targeted rainy 
weather recognition from daytime images. Since image features 
vary by time of day, we will discuss image features that are 
effective at night. 

In rainy weather images at night, the refraction of light is 
characteristic (Figure 12). A night image is dark, and almost 
nothing could be seen without a light or the lighted area. 
Raindrops were also difficult to be seen on the windshield away 
from the lighted area. Streetlights or car lights for example, are 
seen as many small lights distributed over the surroundings of a 
large light by the refraction of raindrops on the windshield 
(Figure 12(a)). Rainy weather recognition may be improved if 
this feature can be recognized from an image.  

We extracted areas with high brightness, i.e., light areas, and 
classified them into the light source and the refracting light 
areas. By checking around the light source area, we determined 
rainy weather by the existence of many refracted light areas. 
Figure 13 shows the success rate of rainfall judgment by 
changing the thresholds (numbers of refracted light areas). 

 

VI. CONCLUSION 
In this paper, we proposed a method to recognize weather 

conditions when driving by detecting raindrops on the 
windshield from in-vehicle images that use a subspace method. 
In experimental results using actual images, we obtained good 
results when extraction of the image features was easy. By 
restricting the detection to the sky area, we also achieved good 
results when the detection was difficult. Hence we confirmed 
the efficacy of our method. 

In the future we will consider a robust method that detects 
raindrops in background areas using inter-frame information. 
In addition, although we restricted the target area for the 
raindrop detection using image features, we considered using 



 
 

visible positional information, which can be obtained from a 
so-called “eye camera.” Therefore in the detection area we will 
include the area near the view of drivers. Moreover, evaluation 
of the method under various rainy weather situations according 
to time, place, and rainfall is another subject. 
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(a) Rain 

(b) Fair 

Fig. 12. Nighttime rainy weather image: refracted light areas are 
seen around the light source area. 
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Fig. 13. Success rate of rainfall judgment at night by changing the 
threshold: We used 100 images for both fair and rainy weather, and 
judged by the number of detected raindrops in each image. 
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