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ABSTRACT

We propose a method for detecting obstacles by comparing
input and reference train frontal view camera images. In the
field of obstacle detection, most methods employ a machine
learning approach, so they can only detect pre-trained classes,
such as pedestrian, bicycle, etc. This means that obstacles of
unknown classes cannot be detected. To overcome this prob-
lem, we propose a background subtraction method that can
be applied to moving cameras. First, the proposed method
computes frame-by-frame correspondences between the cur-
rent and the reference (database) image sequences. Then, ob-
stacles are detected by applying image subtraction to corre-
sponding frames. To confirm the effectiveness of the pro-
posed method, we conducted an experiment using several im-
age sequences captured on an experimental track. Its results
showed that the proposed method could detect various obsta-
cles accurately and effectively.

Index Terms— Railway safety, Object detection, Sub-
traction techniques

1. INTRODUCTION

Railway accidents caused by obstacles are one of the most
important issues that should be solved. There is a demand for
obstacle detection systems, and accordingly, a surveillance
system for detecting obstacles in level crossings has been de-
veloped [1]. However, the area that can be monitored by this
system is restricted due to a fixed camera.

On the other hand, various sensing devices can be used for
obstacle detection by being mounted on the front of a train.
Since these devices do not require large modifications to the
current railway system, especially to ground-side facilities,
they may be easily introduced. Therefore, obstacle detection
methods using frontal view sensors are expected [2, 3, 4, 5,
6, 7]. However, in the case of railway, distant obstacles must
be detected since the braking distance of a train is very long.

Therefore, using millimeter-wave RADAR and LIDAR is not
an option due to their low resolutions. In addition, using mul-
tiple sensors increases the cost. From this point of view, a
train frontal view camera can be considered as the option for
obstacle detection in a railway system.

Object detection by camera is one of the most active re-
search areas in the computer vision field, and numerous meth-
ods have been proposed [6, 7, 8, 9, 10]. Most methods employ
a machine learning approach, and they can detect pre-trained
objects, such as pedestrian, bicycle, etc. However, unknown
objects cannot be detected by these methods. Although back-
ground subtraction could be a solution, it cannot be simply
applied to a train frontal view camera, since it moves together
with the train. Therefore, it is important to develop a method
for forward obstacles detection based on background subtrac-
tion that can be applied to a train frontal view camera moving
together with the train.

Although few research groups have tackled background
subtraction for moving cameras, most of them use a single
image sequence and only moving objects can be detected [11,
12]. Meanwhile, Kyutoku et al. proposed a method for detect-
ing general obstacles by a car mounted camera by subtracting
the current image sequence from the reference (database) im-
age sequence [13]. By assuming that these two image se-
quences are captured on slightly different driving paths, this
method succeeded to accurately align two image sequences
with the metric. This assumption requires sufficient base-line
length between cameras capturing the two image sequences
to compute the metric between the sequences. However, in
the case of railway, sufficient base-line length cannot be ob-
tained since trains always run on the same tracks. In addition,
since this method only aligns road surfaces between two im-
age sequences, a large registration error will occur outside of
it. Thus, distant / small obstacles cannot be distinguished ac-
curately due to noise caused by the image registration error.

Therefore, we propose a moving camera background sub-
traction method,which method detects obstacles by compar-
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Fig. 1. Framework of the proposed method.

ing input and reference images. The contributions of this pa-
per are:

1. Introduction of a new metric that can align two im-
age sequences even if the base-line length between two
cameras is small.

2. Detection of arbitrary distant obstacles by pixel-wise
image registration and integration of multiple image
subtraction mechanisms.

2. MOVING CAMERA BACKGROUND
SUBTRACTION FOR OBSTACLE DETECTION

To detect obstacles by subtracting two image sequences,
pixel-level alignment is needed. In the case of a train frontal
view camera, since an image sequence is captured from a
moving train, two image sequences must be aligned both spa-
tially and temporally. To solve this, the proposed method first
finds a reference frame captured at the most similar location
to the current frame by image sequence matching. Then, it
performs pixel-wise registration between the current frame
and its corresponding reference frame. Finally, multiple
image subtraction methods are applied to compute the image
difference between the two frames, and obstacles are detected
by integrating their outputs. Figure 1 shows the framework
of the proposed method.

2.1. Temporal alignment: Computation of frame-by-
frame correspondences

In the case of railway, train frontal view cameras always take
the same trajectory since trains run on the same track. This
results in a very short base-line length between cameras of
the current and the reference image sequences. To cope with
this situation, the proposed method introduces a new metric to
align the two image sequences. Figure 2 shows close and dis-
tant train frontal views of the current and the reference image
sequences.

Distant Close

Overlap Overlap

Current frame Reference frame 2Reference frame 1

Fig. 2. Differences of view by varying capturing locations.

Let the current and the reference image sequences be F =
{f1, f2, ..., fp} and G = {g1, g2, ..., gq}, respectively. Here,
fi denotes the i-th frame of the current image sequence, and
gj denotes the j-th frame of the reference image sequence.
First, the proposed method computes the frame-by-frame cor-
respondences between sequences F and G. Next, the distance
d(i, j) between the current frame fi and the reference frame
gj is calculated as the variance of angles between correspond-
ing key-points as,

d(i, j) =

{ 1
nij

∑nij

k=1 h(θijk −mij) (nij ≥ α)

∞ (otherwise)
, (1)

h(x) = min {x2, (x+ 2π)2, (x− 2π)2}, (2)

where nij is the number of corresponding key-point pairs be-
tween fi and gj , θijk is the angle of the k-th key-point pair
represented by the polar coordinate system, mij is the mean
of θijk, and α is a positive constant. Here, the angle is repre-
sented by relative angle from the x-axis. In this equation,
if the current frame is captured at a camera position close
to the reference frame, the variance becomes small. More-
over, it can be computed regardless of the base-line length be-
tween two cameras. Finally, frame correspondences (fi, gj)
between the current and the reference image sequences are
obtained by applying Dynamic Time Warping to minimize
d(i, j). Figure 3 shows an example of corresponding frames
of the current and the reference image sequences.

2.2. Spatial alignment: Computation of pixel-wise image
registration for temporally aligned frames

To obtain accurate image alignment, the proposed method
performs pixel-wise image registration against correspond-
ing frames fi and gj obtained in the previous step. Here,
DeepFlow [14] is used for calculating the deformation field
from gj to fi. Then, completely aligned image g′j is ob-
tained by applying the deformation field to gj . Figure 4 shows
the absolute image difference between the frames in Fig. 3.
Figure 4(a) shows the image difference between the original
frames |fi − gj |, and Fig. 4(b) shows the image difference
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(a) Current frame fi (b) Reference frame gj

Fig. 3. Corresponding frames (fi, gj) in the current and the
reference image sequences.

(a) Before alignment (b) After alignment

Fig. 4. Examples of image difference between the corre-
sponding frames in Fig. 3.

after pixel-wise alignment |fi − g′j |. In these images, darker
pixels indicate larger image errors.

2.3. Image subtraction for completely aligned images

Robustness against lighting conditions is one of the most im-
portant issues when developing a system for railways, since it
needs to handle various environments. Here, multiple image
subtraction metrics are combined to solve this problem.

First, two types of image subtraction metrics are calcu-
lated from fi and g′j . The first one is Normalized Vector Dis-
tance (NVD), and is calculated as,

NVD(a,b) =

∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ . (3)

Here, a and b are image patches represented in vectors con-
sisting of RGB channels. The second one is Radial Reach
Filter (RRF) proposed by Satoh et al. [15]. RRF is calculated
by comparing the intensity of each RGB channel between the
target pixel and its surroundings.

Next, to reduce noise, Gaussian filter is applied to differ-
ence images obtained by NVD and RRF. Then, two binary
images d1ij and d2ij are obtained by thresholding. Here, the
threshold T for the binarization is determined as,

T = µij + nσij , (4)

where µij and σij are the average and the variance of each
difference image, respectively. Finally, the extracted pixels
are considered as candidates of obstacles.

(a) NVD (b) RRF

Fig. 5. Image difference calculated by NVD and RRF.

(a) NVD (b) RRF

Fig. 6. Obstacles detected by NVD and RRF.

Figure 5 shows examples of image differences calculated
by NVD and RRF, and Fig. 6 shows the obstacles detected
by thresholding the difference images in Fig. 5. In Fig. 5, the
black pixels indicate large image differences and in Fig. 6, the
white pixels indicate obstacle candidates.

To reduce the false positives of obstacles, the proposed
method integrates the above NVD and RRF images. Before
integration, to reduce salt and pepper noise caused by bal-
last, grasses, and shadow borders, morphological operations
(opening and closing) are applied to both d1ij and d2ij .

Then, connected-component labeling is applied, and the
bounding-box of each connected-component is extracted.
Here, there is a relation between the size of a bounding-box
and the distance between the camera and the obstacle; A
distant obstacle is observed as a small bounding-box, and a
closer obstacle is observed as a large bounding-box. There-
fore, the proposed method removes bounding-boxes that do
not satisfy this relation. To evaluate this relation, the proposed
method refers to the gauge (the width of the track) measured
from the image, whose actual width is fixed and known.
Then, the size of each bounding-box is compared with the
gauge in the image, and small bounding-boxes are removed.
In addition, the proposed method removes bounding-boxes
outside the track because they do not obstruct the train. Here,
the method by Nasuu et al. [16] is used for detecting tracks
from a train frontal view image. These steps are applied to
obstacle candidates of NVD and RRF, separately.

Finally, the proposed method outputs obstacles detected
by both NVD and RRF. Here, it outputs only overlapped
bounding-boxes between NVD and RRF.
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Fig. 7. Example of a detected obstacle.
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Fig. 8. ROC curves.
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Fig. 9. Frame accuracy rate.

3. EXPERIMENTS AND DISCUSSIONS

To evaluate the effectiveness of the proposed method, we pre-
pared train frontal view images captured on a test line in the
premises of the Railway Technical Research Institute, Japan.
Grasshopper3 (Point Grey Research, Inc.) was mounted on
2.5 m height of the front view of a railway trolley. The size
of captured images was 1,920 × 1,440 pixels, and the frame
rate was 10 fps. The focal length of the camera was 25 mm,
and the pixel pitch was 4.54µm. In this experiment, the rail-
way trolley was controlled manually. A total of 2,117 frames
were contained in the dataset which was constructed by ex-
tracting frames in five frames interval from the recorded five
videos. No obstacle existed in three videos, and the other
two videos included a pedestrian and a box as obstacles, re-
spectively. Bounding-boxes of all obstacles were annotated
manually. One of the videos including no obstacle was used
as the reference image sequence, and the other videos were
used as the current image sequences.

The result was evaluated by changing parameter n that
controls the threshold in Eq. (4). The detection accuracy was
evaluated by the following criteria:

Detection rate =
# of detected obstacles

# of all obstacles

False detection rate =
# of false detections

# of all detections

Frame correctness rate =
# of correct frames

# of all frames

Here, if the detected bounding-box covered more than 10 %
of an annotated obstacle region, we considered that it was de-
tected correctly. Otherwise, it was considered as a false pos-
itive. ∆x and ∆y are the differences of the size between the
detected obstacle and the annotated obstacle in x (horizontal)
and y (vertical) coordinates. If the following condition was
not satisfied, it was considered as a false positive.

2∆x ≤ w and 2∆y ≤ h (5)

Here, w and h are the width and the height of the manually
annotated obstacle, respectively. Frame correctness was cal-

culated by counting the number of frames where obstacles
were detected correctly.

Based on these criteria, the proposed method was com-
pared with methods using either NVD or RRF. Figure 8 shows
the ROC curve of each method. As seen here, the proposed
method could achieve the highest accuracy. In addition, from
Fig. 9, we can see that the proposed method obtained the best
frame correctness of 85.8 % when n = 3.8.

Although the proposed method could obtain the best, it
sometimes failed to detect obstacles. This could be explained
that since the proposed method integrated NVD and RRF for
detecting obstacles, the performance degradation of NVD or
RRF affected the result of the proposed method. To overcome
this problem, we will investigate other metrics for image sub-
traction.

4. CONCLUSIONS

This paper proposed a method of moving camera background
subtraction for forward obstacle detection from a train frontal
view camera. To detect general obstacles, frame-by-frame
correspondences between the current and the reference image
sequences of train frontal view were computed based on the
angle difference of corresponding key-points. After, pixel-
wise image registration, obstacles were detected by integrat-
ing two kinds of subtraction methods.

To demonstrate the effectiveness of the proposed method,
experiments were conducted by capturing train frontal view
image sequences on an experimental track. Its results showed
the effectiveness of the proposed method.

Future works include introduction of a background mod-
eling method and evaluation in various lighting conditions,
seasons, and weathers.
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