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Abstract—In this paper, we propose a multiclass classifier
training method which reduces “fatal” misclassifications by
cost-relaxation of “tolerable” misclassifications in one-against-all
classifiers training, named misclassification tolerable learning. In
a binary classifier in the one-against-all classifiers, we introduce
a new class group “conceptually similar classes,” whose class
labels are similar to the positive class. In the case of pedestrian
orientation classification, the conceptually similar classes are
defined as neighboring orientations to the positive orientation. We
consider the misclassification of the conceptually similar classes
to the positive class as tolerable misclassification. By relaxing the
cost of the tolerable misclassifications, our proposed classification
method reduces fatal misclassifications of non-similar classes.
We evaluated the cost-relaxation effectiveness on several public
datasets and confirmed that the proposed method outperforms
the normal SVM on all of the datasets in the soft criterion by
achieving 78.63% recognition rate on PDC Dataset.

I. INTRODUCTION

Technologies related to Advanced Driver Assistance Sys-
tems (ADAS) have been actively developed in recent years.
The main focus of the technologies is to reduce the risk
of traffic accidents. Since a huge number of pedestrians are
killed in traffic accidents, reducing traffic accidents involving
pedestrians is one of the most important problems. To avoid
such accidents, various sensors are installed in state-of-the-
art vehicles. Among the sensors, recently, in-vehicle camera
is considered as an useful sensor, and many technologies
using an in-vehicle camera for ADAS have been developed.
Detecting pedestrians from it is one of the most active topics
and many papers are published. For more advanced driver
assistance, not only detecting pedestrians, but also predicting
their behavior from an in-vehicle camera, especially, predicting
the walking direction of a pedestrian is required.

To predict walking direction or behavior of a pedestrian,
his/her trajectory is one important key. However, it is difficult
to obtain trajectories of pedestrians who are standing still.
The orientation of a pedestrian is also an important key and
pedestrian orientation classification is also actively developed.
If we can classify his/her orientation from an in-vehicle
camera, the information should be a valuable prior to predict
his/her walking direction or behavior.

In many researches, pedestrian orientations are divided into
several classes, and the problem is formulated as a multiclass
classification problem [1]–[8]. Most of these methods classify
pedestrian orientations into four or eight classes (e.g. S (south),
SW (south west), W (west), . . . , SE (south east), as shown in
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Fig. 1. Images sampled from PDC dataset introduced by Tao et al. [6].
The pedestrian orientation classification problem is usually formulated as
a multiclass classification problem by dividing its orientation into several
discrete classes.

Fig. 1) by using a multiclass classifier, such as a combina-
tion of Support Vector Machines (SVMs). If a classification
system classified the orientation of a pedestrian in the correct
orientation class, the classification is judged as a success, and
vice versa.

In the orientation classification problem for pedestrian be-
havior prediction, if the system classified the orientation as
the opposite orientation to the truth, it is considered as a
fatal misclassification (Fig. 2(iii)). However, if the system
classified the orientation as neighboring orientations of the
truth (Fig. 2(iv)), it is not necessarily fatal, since in some
cases, the misclassification is tolerable because the neighbor-
ing orientations are conceptually similar to the truth.

To generalize this, considering actual applications, although
misclassification to non-similar classes makes a fatal error,
misclassification to conceptually similar classes does not make
a fatal error for the application.

Existing multiclass classifiers do not consider such con-
ceptual similarity of classes, and they are trained under the
premise that the misclassification penalty should be the same
for all classes, regardless of their conceptual similarity.

Our contributions are summarized as follows:
1) We introduce concepts of two class groups; one is

conceptually similar classes which consists of classes
whose class labels are similar to the positive class, and
the other is non-similar classes which consists of classes
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(iii) Fatal misclassification (iv) Tolerable misclassification
Fig. 2. Pedestrian orientation classification for behavior prediction. (i) Ob-
servation image. (ii) Truth of orientation classification. (iii) Misclassification
to the opposite orientation to the truth. In this case, the classification result
will lead to fatal error for behavior prediction. (iv) Misclassification to a
neighboring orientation of the truth. In this case, the classification result can
be tolerable for behavior prediction.

whose class labels are not similar to the positive class.
We consider the misclassification of the conceptually
similar classes to the positive class can be tolerable for
the application.

2) We propose misclassification tolerable learning, which is
a multiclass classifier training with cost-relaxation of tol-
erable misclassifications. Tolerating misclassifications of
the conceptually similar classes to the positive class by
cost-relaxation and tuning the classifier to separate the
positive class and the non-similar classes, our proposed
method can reduce fatal misclassifications and increase
the entire classification accuracy.

3) For evaluation, we apply this classifier to the pedestrian
orientation classification problem, and show that it can
actually reduce fatal misclassifications.

The rest of the paper is organized as follows: Section II
summarizes previous work on pedestrian orientation classi-
fication and multiclass classifiers. In Section III, details of
our proposed method are introduced. Experimental results are
reported in Section IV. Finally, we conclude this paper in
Section V.

II. RELATED WORK

A. Pedestrian Orientation Classification

Existing researches on pedestrian orientation classification
from an image can be mainly divided into two approaches.
One is an approach using a pedestrian detector for each
orientation [1], [2], and the other is an approach that applies
a pedestrian orientation classifier to the detected pedestrians.
In this paper, we assume that pedestrian bounding boxes are
given, thus we follow the latter approach.

Generally, many researches on pedestrian orientation clas-
sification focus on developing features or modifying classifi-
cation methods.

Gandhi et al. [9] proposed an orientation estimation method
using Histograms of Oriented Gradients (HOG) feature and
Support Vector Machine (SVM). Tao et al. [6] proposed part-
based features to accurately classify pedestrian orientations
with a Random Decision Forest. Shimizu et al. [10] proposed
an orientation classification method which combines sixteen
orientation classifier outputs by a decision function.

As an additional sensing device, depth sensor is usually
used. Liu et al. [5] proposed an orientation classification
method using an RGB-D sensor. Shinmura et al. [7], [8]
introduced a method using an RGB-ToF camera. This method
uses the depth information for background removal to reduce
background noise and use the depth information for feature
weighting to enhance the pedestrian features. These methods
also make use of a multiclass classifier to classify pedestrian
orientations.

B. Support Vector Machine for Multiclass Classification

Support Vector Machine (SVM) is one of the well known
and practical binary classifiers, which is known for its high
classification performance. A multiclass classifier can be
constructed by combining multiple binary classifiers, usually
SVMs.

There are several approaches to combine binary classifiers
to construct a multiclass classifier [11]–[14]. Among them,
two common combination methods are mainly used; one is
the one-against-one scheme [12], and the other is the one-
against-all scheme [14]. For classes c1, c2, . . . , cK , the one-
against-one scheme combines KC2 binary classifiers of all
combinations of ci and cj . On the other hand, the one-against-
all scheme combines K classifiers; Each classifier is a binary
classifier where class ci is the positive class and the other
classes {c1, . . . , cK}\ci are negatives. Here, {c1, . . . , cK}\ci
denotes the classes except class ci. For the one-against-all
scheme, all classes except ci are equivalently considered as
negatives.

The one-against-all scheme can obtain higher accuracy in
case of small number of classes [15]. Since our problem
usually requires a small number of classes, as introduced in
section I, we follow the one-against-all approach.

III. MISCLASSIFICATION TOLERABLE LEARNING

A. Introduction of Conceptually Similar Classes

In the original one-against-all scheme, each binary classifier
is trained to classify two classes; a positive class ci and the
others {c1, c2, . . . , cK}\ci . It handles “the others” as a single
negative class. On the other hand, our proposed method divides
“the others” into two negative class groups; conceptually
similar classes and non-similar classes. Thus, in our method,
each binary classifier handles a positive class, conceptually
similar classes, and non-similar classes. Actually, both the
conceptually similar classes and the non-similar classes are
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Fig. 3. Normal binary classifier for classes S and Not S (classes SW and N
in the figure). Some images in classes S and N appear similarly. To minimize
misclassification, we can draw a classification hyper plane as shown in the
figure. In this example, there are four misclassifications including two fatal
ones.

negatives, but the proposed binary classifiers tolerate misclas-
sifications of the conceptually similar classes to the positive
class. We consider such misclassification of the conceptually
similar classes as “tolerable misclassification”.

Here, we define the conceptually similar classes as a class
group which consists of classes whose class labels are similar
to the positive class label. For this discussion, class label
similarity must be defined. In this paper, we focus on a
problem that class label similarity can be defined, such as
pedestrian orientation classification.

B. Class Label Similarity in Pedestrian Orientation Classifi-
cation

Pedestrian orientation classification is a multiclass clas-
sification problem of divided orientations whose class la-
bels are usually four or eight orientations. Each class ci is
described as a representative orientation degree d(ci), like
S (0◦), SW (45◦), . . . , SE (315◦). Therefore, we can
define the class label similarity by using the difference of the
orientations in degrees. Because orientation degree is cyclic,
using a cosine function, we define the similarity of classes ci
and cj as

s(ci, cj) = cos(|d(ci)− d(cj)|). (1)

In this definition, we can say that classes S (0◦) and SW
(45◦) are more similar than classes S (0◦) and N (180◦).
Generally, the neighboring orientation classes are similar in
this definition. Here, we define conceptually similar classes
(csc) of class ci and non-similar classes (nsc) of class ci as

csc(ci) = {cj |∀j, s(ci, cj) ≥ T, ci ̸= cj}, (2)
nsc(ci) = {cj}\ci − csc(ci), (3)
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Fig. 4. Proposed binary classifier for class S and classes Not S. In the
proposed method, class Not S is divided into two class groups; Conceptually
Similar Classes and Non-Similar Classes. Misclassifications of Conceptually
Similar Classes are tolerated. In this example, misclassification of class SW
to S is tolerated, so we can draw a classification hyperplane as shown in the
figure. Four misclassifications are tolerated.

where csc(ci) is the conceptually similar classes of class ci
and nsc(ci) is the non-similar classes of class ci respectively,
and T denotes a thresholding parameter. In this paper, we
set T =

√
2/2, where the maximum difference among the

orientations in degree of conceptually similar classes is 45◦,
therefore, neighboring orientations in classification of eight
orientations are considered as the conceptually similar classes.

C. Cost-Relaxation in the Classifier Training

We introduce a binary classifier which relaxes the mis-
classification cost of the conceptually similar classes to the
positive class and tunes for separating the positive class and
the non-similar classes. It reduces fatal misclassifications while
tolerating misclassifications of the conceptually similar classes
to the positive class. To realize this, we modify the soft-margin
SVM optimization function in Eq. (4) to Eq. (8).

Let xi be a training sample, yi its binary class label, w and
b the classification hyperplane parameters, C the soft margin
parameter, and ξi the slack variable, the SVM optimization
function of a binary classifier (class cp or not) can be written
as

argmin
w,b,ξ

1

2
||w||2 + C

N∑
i=1

ξi (4)

subject to {
yi(w

Tϕ(xi) + b) ≥ 1− ξi,

ξi ≥ 0,
(5)

where

yi =

{
1, if xi ∈ cp

−1, if otherwise.
(6)
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Here, we introduce cost-relaxation parameters

si =

{
s, if xi ∈ c, c ∈ csc(cp),
1, otherwise,

(7)

where s (≤ 1) denotes a cost-relaxation weight parameter. Us-
ing these parameters, our proposed SVM optimization function
can be written as

argmin
w,b,ξ

1

2
||w||2 + C

N∑
i=1

siξi (8)

subject to {
yi(w

Tϕ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.
(9)

This is a variation of the weighted SVM [16] which is a
generalization of the standard SVM. The difference from the
general weighted SVM is that the method restricts the weights
by the label similarities.

As same as the weighted SVM, the dual problem of Eq. (8)
can be written as

L̃(λ) =

N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjk(xi,xj), (10)

subject to {
0 ≤ λi ≤ siC,∑N

i=1 λiyi = 0,
(11)

where λ = {λi} denotes the Lagrange variables, and k(xi,xj)
is a kernel function. By optimizing the function L̃(λ), we can
calculate the classification hyperplane parameters w and b.

D. Classifier Characteristics of the Proposed Method

Here, we discuss the effect of cost-relaxation of tolerable
misclassification in the one-against-all classifier training. We
show an example of pedestrian orientation classification by
standard SVM and the proposed method in Fig. 3 and Fig. 4,
respectively.

In the example, some of image features in classes S and N
are similar, although there is a large difference between their
class labels. The classifier is trained to classify class N from
class S, and class SW from class S, simultaneously. There-
fore, by minimizing the misclassifications, the classification
hyperplane in Fig. 3 is drawn. In this case, we obtain four
misclassifications including two fatal ones.

On the other hand, in the proposed method, we divide the
negative class {SW, N, . . .} into the conceptually similar
classes {SW, . . .} and the non-similar classes {N, . . .}
as shown in Fig. 4. By giving a smaller cost-relaxation
weight parameter to the training samples in the conceptually
similar classes, the classifier tolerates the misclassification of
the conceptually similar classes to the positive class, and is
tuned to separate the positive class S and the non-similar
classes {N, . . .}. As a result, the classification hyperplane
in Fig. 4 is drawn. In this case, we obtain the same number of
misclassifications, but they are tolerable for the application.

S SW NWW NE SEN E
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Fig. 5. Images sampled from TUD dataset introduced by Andriluka et al. [17].
To make the condition same as PDC dataset, we cropped pedestrians in the
same aspect ratio and converted them to gray-scale images.

IV. EVALUATION

To evaluate the classification performance of the pro-
posed method, we compared several methods with two public
datasets.

A. Datasets

1) TUD Multiple View Pedestrian Dataset: This dataset
(TUD dataset) is provided by Andriluka et al. [17]. This
dataset is composed of 5,183 bounding boxes in color images
with annotations of eight orientations. It includes 4,935 bound-
ing boxes for training and 248 bounding boxes for testing.
Annotations of the dataset consists of skeletons, orientations,
and bounding boxes. We crop pedestrian images using the
provided bounding boxes. As the images in TUD dataset
are color, in order to make the same condition with the
following PDC dataset, we apply color to gray conversion.
Some examples of images in the dataset are shown in Fig. 5.

2) Pedestrian Direction Classification Dataset: This dataset
(PDC dataset) is provided by Tao et al. [6]. This dataset is
based on the Daimler Mono Pedestrian Detection Benchmark
Dataset [18], which is commonly used as a pedestrian detec-
tion benchmark. Pedestrian images in the dataset are already
cropped and annotations of pedestrian orientation are also
already manually annotated on the dataset. The dataset is
composed of 11,562 gray pedestrian images with annotations
of eight orientations. Some examples of images in the dataset
are shown in Fig. 1.

B. Compared Methods

To evaluate the effectiveness of the proposed method, we
compare SVM classifiers with/without cost-relaxation for con-
ceptually similar classes.

• SVM (Standard): Traditional Support Vector Machine.
• SVM (Cost-relaxation): Proposed method.

In this evaluation, we used one-against-all scheme for multi-
class classification.
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TABLE I
RECOGNITION ACCURACY COMPARISON ON TUD DATASET

Classification criteria (%)
Strict Soft

SVM (Normal) 47.58 75.40
SVM (Cost-relaxation) 50.40 78.63

TABLE II
CONFUSION MATRIX OF THE PROPOSED METHOD ON TUD DATASET

S SW W NW N NE E SE
S 0.41 0.08 0.08 0.00 0.26 0.03 0.05 0.10

SW 0.11 0.51 0.24 0.05 0.08 0.00 0.00 0.00
W 0.00 0.00 0.78 0.22 0.00 0.00 0.00 0.00

NW 0.11 0.08 0.21 0.42 0.18 0.00 0.00 0.00
N 0.17 0.05 0.00 0.05 0.61 0.02 0.02 0.07

NE 0.05 0.21 0.00 0.00 0.11 0.21 0.26 0.16
E 0.00 0.00 0.00 0.00 0.00 0.15 0.77 0.08

SE 0.12 0.00 0.00 0.08 0.04 0.04 0.44 0.28

TABLE III
CONFUSION MATRIX OF THE CONVENTIONAL METHOD ON TUD DATASET

S SW W NW N NE E SE
S 0.26 0.13 0.03 0.00 0.38 0.00 0.03 0.18

SW 0.14 0.54 0.16 0.08 0.08 0.00 0.00 0.00
W 0.00 0.09 0.57 0.30 0.00 0.00 0.00 0.04

NW 0.16 0.11 0.13 0.42 0.18 0.00 0.00 0.00
N 0.20 0.05 0.00 0.05 0.61 0.02 0.02 0.05

NE 0.11 0.16 0.00 0.00 0.16 0.37 0.16 0.05
E 0.00 0.08 0.00 0.00 0.00 0.19 0.65 0.08

SE 0.08 0.00 0.00 0.12 0.04 0.08 0.28 0.40

For both classifiers, we used Radial Basis Function (RBF)
for the kernel function. We tuned the soft-margin parameter
and a parameter of RBF kernel by cross validation suitable for
the standard SVM. We set the cost-relaxation parameter s = 0
empirically for the following evaluations.

C. Feature

Various features to describe a pedestrian image have been
proposed. Since we do not care about the features in the
proposed method, we simply use Histograms of Oriented
Gradients (HOG) feature proposed by Dalal et al. [19], which
is the most popular feature for pedestrian description.

D. Evaluation Criteria

In the proposed method, since we aim to reduce fatal
misclassifications by cost-relaxation of tolerable misclassifi-
cations, as evaluation criteria, we introduce not only the strict
eight-orientations classification accuracy but also a “soft” clas-
sification criterion, which tolerates the misclassifications to the
neighboring orientation classes. Thus, in the “soft” criterion,
we do not count the misclassifications to the neighboring
orientation classes as false.

The evaluation criteria are summarized as:
• Strict criterion: Strictly evaluates the misclassifications.
• Soft criterion: Tolerates the misclassifications to the

neighboring orientation classes.

TABLE IV
RECOGNITION ACCURACY COMPARISON ON PDC DATASET

Classification criteria (%)
Strict Soft

SVM (Normal) 83.52 97.20
SVM (Cost-relaxation) 81.66 97.76

TABLE V
CONFUSION MATRIX OF THE PROPOSED METHOD ON PDC DATASET

S SW W NW N NE E SE
S 0.82 0.08 0.01 0.00 0.03 0.00 0.00 0.06

SW 0.08 0.66 0.23 0.00 0.01 0.01 0.00 0.00
W 0.01 0.13 0.79 0.05 0.01 0.00 0.01 0.00

NW 0.00 0.00 0.15 0.68 0.16 0.00 0.00 0.00
N 0.01 0.00 0.00 0.04 0.91 0.04 0.00 0.00

NE 0.00 0.00 0.00 0.00 0.20 0.62 0.16 0.01
E 0.00 0.00 0.01 0.00 0.00 0.04 0.90 0.05

SE 0.11 0.00 0.00 0.01 0.02 0.01 0.19 0.66

TABLE VI
CONFUSION MATRIX OF THE CONVENTIONAL METHOD ON PDC DATASET

S SW W NW N NE E SE
S 0.90 0.03 0.01 0.00 0.03 0.00 0.01 0.03

SW 0.16 0.48 0.31 0.01 0.02 0.01 0.01 0.00
W 0.01 0.09 0.83 0.04 0.01 0.00 0.01 0.00

NW 0.01 0.00 0.12 0.67 0.18 0.00 0.01 0.00
N 0.01 0.00 0.00 0.02 0.93 0.03 0.00 0.00

NE 0.00 0.00 0.00 0.00 0.20 0.64 0.14 0.00
E 0.00 0.00 0.01 0.00 0.01 0.04 0.91 0.03

SE 0.15 0.00 0.00 0.00 0.04 0.01 0.19 0.61

E. Single Dataset Evaluation Results

1) TUD dataset: First, we evaluated the methods on TUD
dataset. The classification results are shown in TABLE I. We
can see that the proposed method achieved higher classification
accuracies in both criteria.

The confusion matrices are shown in TABLES II and III.
In these tables, we can see that the proposed method reduced
“fatal” misclassifications.

2) PDC dataset: Then, we evaluated the methods on PDC
dataset. Since the dataset is not divided into training/testing
samples, we performed five-fold cross-validation for the eval-
uation on this dataset.

The classification results are shown in TABLE IV. We can
see that the proposed method achieved lower classification
accuracy in strict criterion but higher classification accuracy
in “soft” criterion.

The confusion matrices are shown in TABLES V and VI.
In these tables, we can also see that the proposed method
increased tolerable misclassifications but reduced “fatal” mis-
classifications.

F. Cross-Dataset Evaluation Results

To evaluate the generalization performance, we performed a
cross-dataset evaluation. We trained the classifier using TUD
dataset and evaluated on PDC dataset, and vice versa.
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TABLE VII
RECOGNITION ACCURACY COMPARISON ON PDC DATASET TRAINED BY

TUD DATASET

Classification criteria (%)
Strict Soft

SVM (Normal) 46.34 72.70
SVM (Cost-relaxation) 48.06 74.57

TABLE VIII
RECOGNITION ACCURACY COMPARISON ON TUD DATASET TRAINED BY

PDC DATASET

Classification criteria (%)
Strict Soft

SVM (Normal) 47.58 75.40
SVM (Cost-relaxation) 50.40 78.63

The classification results are shown in TABLES VII
and VIII. We can see that the proposed method outperformed
the standard SVM in both criteria.

V. CONCLUSION

In this paper, we proposed a classification training method
which reduces “fatal” misclassifications by cost-relaxation of
“tolerable” misclassifications for pedestrian orientation classi-
fication, named misclassification tolerable learning. We intro-
duced a new class group conceptually similar classes to the
one-against-all classification scheme. The conceptually similar
classes are defined as classes whose class labels are similar to
the positive class. In the case of pedestrian orientation classi-
fication, the conceptually similar classes are defined as classes
whose class labels are neighboring orientation classes to the
positive orientation class. A pedestrian orientation classifier
was implemented by relaxing the misclassification cost for
the conceptually similar classes and tuning the classifier for
separating the positive class and the non-similar classes in
one-against-all SVM training. We confirmed the classification
performance of the proposed method by evaluating on TUD
and PDC datasets.

Future work includes extension of the proposed concept to
classifiers other than SVM, and application on other classifi-
cation problems.

ACKNOWLEDGEMENT

Parts of this research were supported by the Center of Inno-
vation Program from Japan Science and Technology Agency,
JST.

REFERENCES

[1] M. Enzweiler and D. M. Gavrila, “Integrated pedestrian classification
and orientation estimation,” in Proceedings of the 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2010,
pp. 982–989.

[2] K. Goto, K. Kidono, Y. Kimura, and T. Naito, “Pedestrian detection
and direction estimation by cascade detector with multi-classifiers uti-
lizing feature interaction descriptor,” in Proceedings of the 2011 IEEE
Intelligent Vehicles Symposium, 2011, pp. 224–229.

[3] C. Weinrich, C. Vollmer, and H. M. Gross, “Estimation of human upper
body orientation for mobile robotics using an SVM decision tree on
monocular images,” in Proceedings of the 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 2147–2152.

[4] D. Baltieri, R. Vezzani, and R. Cucchiara, “People orientation recogni-
tion by mixtures of wrapped distributions on random trees,” in Proceed-
ings of the 12th European Conference on Computer Vision, 2012, pp.
270–283.

[5] W. Liu, Y. Zhang, S. Tang, J. Tang, R. Hong, and J. Li, “Accurate
estimation of human body orientation from RGB-D sensors,” IEEE
Transactions on Cybernetics, vol. 43, no. 5, pp. 1442–1452, 2013.

[6] J. Tao and R. Klette, “Part-based RDF for direction classification
of pedestrians, and a benchmark,” in Proceedings of the 12th Asian
Conference on Computer Vision Workshop, 2014, pp. 418–432.

[7] F. Shinmura, D. Deguchi, I. Ide, H. Murase, and H. Fujiyoshi, “Es-
timation of human orientation using coaxial RGB-Depth images,” in
Proceedings of the 2015 International Conference on Computer Vision
Theory and Applications, 2015, pp. 113–120.

[8] F. Shinmura, Y. Kawanishi, D. Deguchi, I. Ide, and H. Murase,
“Pedestrian orientation classification utilizing single-chip coaxial RGB-
ToF camera,” in Proceedings of the 2015 Workshop on Environment
Perception for Automated On-road Vehicles, 2015, pp. 7–11.

[9] T. Gandhi and M. M. Trivedi, “Image based estimation of pedestrian
orientation for improving path prediction,” in Proceedings of the 2008
IEEE Intelligent Vehicles Symposium, 2008, pp. 506–511.

[10] H. Shimizu and T. Poggio, “Direction estimation of pedestrian from
multiple still images,” in Proceedings of the 2004 IEEE Intelligent
Vehicles Symposium, 2004, pp. 596–600.

[11] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via
error-correcting output codes,” Journal of Artifical Intelligence Research,
vol. 2, pp. 263–286, 1994.

[12] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,”
Annals of Statistics, vol. 26, no. 2, pp. 451–471, 1998.

[13] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin DAGs
for multiclass classification,” in Proceedings of Advances in Neural
Information Processing Systems, 2000, pp. 547–553.

[14] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[15] J. Milgram, M. Cheriet, and R. Sabourin, ““One Against One” or “One
Against All”: Which one is better for handwriting recognition with
SVMs?” in Proceedings of the 10th International Workshop on Frontiers
in Handwriting Recognition, 2006, pp. 1–6.

[16] M. Lapin, M. Hein, and B. Schiele, “Learning using privileged informa-
tion: SVM+ and weighted SVM,” Neural Networks, vol. 53, pp. 95–108,
2014.

[17] M. Andriluka, S. Roth, and B. Schiele, “Monocular 3D pose estimation
and tracking by detection,” in Proceedings of the 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. IEEE,
2010, pp. 623–630.

[18] M. Enzweiler and D. Gavrila, “Monocular pedestrian detection: Survey
and experiments,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 12, pp. 2179–2195, Dec. 2009.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-
tection,” in Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2005, pp. 886–893.

486


