超低解像度温度画像系列からの

深層学習に基づく人物行動認識に関する分析

昂之*, 川西 康友, 出口 大輔, 井手 一郎, 村瀬 洋(名古屋大学)

An analysis on deep learning based action recognition from extremely low-resolution thermal image sequence Takayuki Kawashima, Yasutomo Kawanishi, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase (Nagoya University)

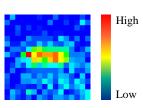
1. まえがき

近年、高齢化社会の進展に伴い、独居高齢者の数が増加し ている. そのため、高齢者の日常生活を見守り、歩行、着席、 起立などの日常行動や、転倒などの異常行動を認識するシス テムへの関心が高まっている. このような日常生活を見守る ためのセンサとして、赤外線センサアレイが注目されている. 赤外線センサアレイは複数の赤外線センサを格子状に集約し たセンサであり, ある領域内の温度分布を計測することがで きる. 人体を可視光カメラと赤外線センサアレイで撮影した 例を Fig. 1 に示す. 赤外線センサアレイは, 可視光カメラに 比べて暗闇での人体検知が可能であり, また超低解像度であ るためプライバシー上の問題を回避できるという特徴がある. これらの理由から、赤外線センサアレイを用いた人物行動認 識の研究が進められている.

我々は以前, CNN と LSTM の組み合わせにより行動の時空 間的な特徴を学習することで, 超低解像度温度画像系列から 人物行動を認識する手法を提案している(1). また, 可視光 の画像系列から時空間特徴を学習するための手法として 3DCNN が有効であると報告されている(2). そこで本発表で は,超低解像度温度画像系列に対する3DCNNの適用により, 行動認識の性能が向上するかどうか調査した結果を報告する.

2. 深層学習に基づく行動認識

入力温度画像系列に対する事前処理は(1)と同じ手法を適 用し、ネットワークアーキテクチャには 3DCNN と LSTM を 組み合わせたものを用いる. ネットワークの入力は10×10× 8の温度・フレーム間差分画像系列2チャネルとする. Fullyconnected 層, LSTM 層のユニット数は (1) と統一し, Convolution 層を 3DConvolution 層に置き換える. (1) と同様 に、温度・フレーム間差分画像が各時刻で入力され、ネット ワークは各時刻で行動クラスを出力する. 最終フレームまで 入力した時の出力は系列全体の時間的変化を考慮することが できるため, 最終フレームの出力を系列全体の識別結果とし て採用する.


3. 実験および結果

室内において天井に設置したセンサで撮影した計 2,520 系 列のデータを実験に用いた. 2,240系列を学習データ, 280系 列を評価データとした. データセットには,「静止」,「歩行」, 「着席」、「起立」、「転倒」が含まれている. Correct Classification

Table 1. Experimental result

	CCR
CNN + LSTM	91.79
3DCNN + LSTM	37.50
Dai et al.(3)	55.00

(a) Visible-light image (b) Extremely low-resolution thermal image

Fig.1. Examples of images captured by a visible-light camera and a 16×16 far-infrared sensor array

Rate (CCR) を算出することで性能を評価した.

実験結果を Table 1 に示す. Table 1 より, CNN + LSTM の 性能が最も高い. これは、事前処理においてフレームごとに 画像の切り出しを行なっており、切り出された画像を入力と した場合、3DCNNでは動き特徴をうまく学習できなかったた めだと考えられる. したがって, (1) の事前処理をする場合 は、CNN + LSTM の方が行動識別に有効な特徴を学習できる と考えられる.

4. むすび

本発表では、超低解像度温度画像系列から人物行動を認識 することを目的とし、3DCNNの適用により性能が向上するか どうかを調査した. 実験結果から CNN+LSTM を適用する(1) の手法が高性能であることを確認した. 今後の課題として, 「転倒」に似ている「立ち上がり」や「寝転び」などの行動を 認識対象の行動クラスとして追加することが挙げられる.

謝辞

本研究の一部は、科学研究費補助金による. また、赤外線 センサアレイをご提供くださったオムロン(株)に感謝する.

文 献

- (1) T. Kawashima, et al.: IEEE Conf. AVSS, 2017.
- (2) S. Ji, et al.: IEEE Trans. PAMI, Vol. 35, No. 1, pp.221-231, 2013.
- (3) J. Dai, et al.: IEEE Conf. CVPR Workshop on Analysis and Modeling of Faces and Gestures, pp.68-76, 2015.