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Abstract— This paper proposes a LIDAR-based pedestrian 
detection method using 3DCNN. The proposed method converts a 
sparse point-cloud obtained by a low-resolution LIDAR to two-
channels voxel representation that consists of the 3D object 
probability channel and the reflection intensity channel. To 
evaluate the performance of the proposed method, an experiment 
using real-world LIDAR data was conducted. The results show 
that the proposed method is able to detect pedestrians more 
accurately than detectors trained by other conventional features. 
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I.  INTRODUCTION  
In recent years, Advanced Driver-Assistance Systems 

(ADAS) are becoming popular to realize a safe and comfortable 
driving environment. ADAS are systems that can recognize the 
surrounding environment of a vehicle and warn the driver about 
possible dangers such as crossing pedestrians. LIDAR is one of 
the most popular sensors for ADAS. It is a time-of-flight camera 
and can measure distance to a target by illuminating the target 
with a pulsed laser, and measuring the reflected pulse by a sensor. 
A high-resolution LIDAR can be used to accurately detect  a 
pedestrian, and is used in many researches [1]. However, it is too 
expensive to implement in consumer vehicles. Therefore, this 
paper proposes a method to detect pedestrians using a low-
resolution LIDAR that is much cheaper and smaller than a high-
resolution one for consumer vehicles. Since, point-clouds 
obtained by a low-resolution LIDAR is very sparse, it is difficult 
to distinguish pedestrians and similar objects such as (utility) 
poles and trees.  

Many researches try to use a LIDAR for pedestrian detection, 
and some of them compute features representing a pedestrian’s 
shape from LIDAR data [1,2]. Kidono et al. proposed the slice 
feature that represents the rough shape of a pedestrian combined 
with distribution of reflection intensities [1]. Also, to improve 
the detection performance of a low-resolution LIDAR, we 
proposed a feature extraction method utilizing multi-frames 
information to enhance the density of point-clouds and to 
capture the temporal change of point-clouds [2]. 

Meanwhile, deep learning is becoming to be utilized for 
object recognition from three-dimensional point-clouds. For 

example, Maturana et al. proposed VoxNet [3] that uses a 
representation of the distribution of a point-cloud in the voxel 
space, which is called an occupancy grid. Here, the occupancy 
grid is used as an input of a 3DCNN (3-Dimensional 
Convolution Neural Network). Although the results are very 
promising and the classification accuracy is very high, this 
method is designed for using high-resolution point-clouds such 
as CAD data. Therefore, it cannot be applied directly to 
extremely sparse point-clouds obtained from a low-resolution 
LIDAR. 

In order to combine the merits of both low-resolution 
LIDAR sensors and a 3DCNN, this paper proposes a novel voxel 
representation that can be calculated from a sparse point-cloud. 
A LIDAR sensor irradiates lasers at regular intervals, and 
measurement points are obtained if there are reflected laser 
beams within the irradiation interval and the width of a laser 
beam. The width of the laser beam increases according to the 
distance from the sensor because of spreading of the light. 
Therefore, each measured point has an ambiguity within the 
irradiation interval and the beam width in relation to the distance 
to an object.  This paper utilizes this property to compute the 
novel voxel representation of the sparse point-cloud. In addition, 
the proposed method also utilizes the reflection intensities for 
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Fig. 1.  Process-flow of the proposed method. 



classification, which was not considered by VoxNet. 
Specifically, a two-channel voxel space is constructed by 
calculating a 3D object likelihood voxel map and a reflection 
intensity likelihood voxel map as the input of a 3DCNN. The 
contribution and the novelty of this paper is the proposal of a 
novel voxel presentation that can be calculated from sparse 
point-clouds. By utilizing the measurement ambiguity in relation 
to the distance and the reflection intensity of target objects 
considering LIDAR characteristic, sparse point-clouds can be 
efficiently converted to voxel space, and it can be classified 
accurately using 3DCNN. 

Section II describes the proposed pedestrian detection 
method using the novel voxel representation. Then, details of an 
experiment and discussions are described in Section III. Finally, 
this paper is concluded in Section IV. 

II. PROPOSED METHOD 
Figure 1 shows the overall processes of the proposed 

method. The first step of the proposed method is to detect 3D 
object candidates from point-clouds. This is achieved by 
evaluating the 3D structure of a point-cloud and the difference 
of the reflection intensity between 3D objects and the road 
surface. The next step is to convert the sparse point-clouds of 
each candidate to a voxel representation. Figure 2 shows the 
flow of this process. To cope with the phenomena of LIDAR 
described in Section I, kernel density estimation is used for 
obtaining the likelihood maps, where the size of the kernel 
changes according to the distance to objects. Finally, the voxel 
representation is obtained by sampling from these maps. In the 
training phase, to increase the number of training samples, data 
augmentation is performed by perturbation and rotation of each 
point-cloud based on the LIDAR characteristics. By inputting a 
two-channel voxel representation to 3DCNN, each candidate is 
classified. More details are described in the following sections. 

A. Detection of 3D object candidates 

In the proposed method, 3D objects are detected and 
extracted from point-clouds by applying a 3D object detection 
and tracking algorithm [4]. A point-cloud obtained by this 
algorithm is henceforth called as a candidate point-cloud. 

In this paper,  represents the number of horizontal scans 
hitting an object, and each candidate point-cloud is split by each 
scan. Figure 3 shows an example when  A candidate 
point-cloud can be represented as 

 
(1) 

 

where  is the whole candidate point-cloud,  is a point-cloud 
obtained by the l-th horizontal scan, and  is the i-th data of 
the l-th scan with coordinates (x, y, z) obtained from the LIDAR. 
Figure 4 is a graphical representation of this structure. A 
reflection intensity of a laser beam at  is represented as 

. 
 

B. Conversion from sparse point-clouds to voxel representation 

The proposed method calculates a two-channel voxel the 
representation (  from the 3D object likelihood and the 
reflection intensity of an object. These are obtained from  of 
(1). Figure 2 shows the flow for converting the point-cloud to a 
voxel representation in the case of . This process consists 
of two steps. In the first step, the 3D object likelihood map  
and the reflection intensity likelihood map  are calculated 
from each . In the second step, both likelihood maps are 
converted into a voxel representation to form a two-channel 
voxel representation. 

 
1) Generation of likelihood maps: Since a point-cloud 

obtained from a low-resolution LIDAR is extremely 
sparse, it is difficult to convert it directly into the voxel 
space. Therefore, the kernel density estimation based on 
the distance and the reflection intensity of each point is 
utilized to generate likelihood maps.  Details of this 
process is described below. 

Using measurement data , the 3D object likelihood 
map  can be formulated as  

 (2) 

where  is a 2D Gaussian distribution function, and  is a 
projection matrix to the road surface. That is, a likelihood 
map is a mixture of Gaussian kernels whose 
parameters are the projected point  and a different 
variance-covariance matrix  . Here,  depends on the 
distance , and formulated as follows: 

 
 

 
 
 

 
 

      Fig. 4. Structure of a candidate point-cloud. 

 
 
 
 
 
 
 
 
 

               Fig. 2.  Process-flow for obtaining voxel representation.                                                 Fig. 3. Example of an  point-cloud. 
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 (5) 

Both   and  are calculated based on  and the scan 
errors of the LIDAR. Specifically,  indicates the 
horizontal scan error, and is obtained from two sensor 
characteristics (the width of a laser beam and the 
measurement error).  indicates the scan error along the 
depth direction, and is also obtained from a sensor 
characteristic. 

By using normalized reflection intensity , the 
reflection intensity likelihood map  is calculated as 

 (6) 

where  
 (7)   

2) Conversion to voxel representation: A two-channel voxel 
representation  is obtained by sampling the 
likelihood maps at a certain interval. Specifically, each 
voxel value is formulated as  

 (8) 

where the integration domain  is defined as  

 (9)  
 

Here,  is -norm, and  is calculated as 

 
 

(10) 
 

 is the sampling interval which corresponds to the size 
of each voxel. Here,  is used. This is equal to a 
sampling from  region. Finally, the 
voxel representation has  dimensions. 

C. Data augmentation 

 In order to increase the training data, perturbation and 
rotation of a point-cloud are performed against each training 
sample. In this process, the number of the training data is 
increased by 10 times. The amount of perturbation is controlled 
by the scan error characteristic of the LIDAR. Data 
augmentation by rotation is performed within the range of 

 By combining these perturbation and 
rotation, various patterns of training samples are generated.  

D. Training of 3DCNN 

The proposed method constructs a 3DCNN for each . The 
same network architecture is used for each , and the network 
parameters are as follows. 

 3D Convolutional layer ( ) 

 3D Convolutional layer ( ) 

 Full Connected layer ( ) 

 Full Connected layer ( ) 

Here, a 3D Convolution layer is represented by parameters of 
( ) where the number of filter is , the filter size is , and 
the stride is . Full Connected layer ( ) has  outputs. LeRU [5] 
is used as an activation function, the batch size is 128, and the 
epoch is 100. 

E. Classification by 3DCNN 

The voxel representation of a candidate point-cloud 
described in Section II-B is used as an input of the 3DCNNs, and 
then each candidate is classified whether it is a pedestrian or not. 
The output of this network is the detection result of the proposed 
method. 

III. EXPERIMENTS AND DISCUSSIONS 
To evaluate the effectiveness of the proposed method, 

experiments were conducted using point-clouds obtained from a 
low-resolution LIDAR. 

A. Experimental setup 

The experiment was conducted using point-clouds obtained 
from a low-resolution LIDAR, collected in a real-world 
environment. By applying a 3D object detection and tracking 
algorithm to the collected data, candidate point-clouds were 
obtained. All of extracted positive samples and negative samples 
(pole, tree, and so on) were used as the input of the proposed 
method. TABLE I shows the result of aggregating the data by 
each  The performance of the proposed method was evaluated 
by two-fold cross validation. To ensure fair comparison, point-
clouds obtained from the same object were only included in 
either of training or test samples. We evaluated the proposed 
method by ROC (Receiver Operating Characteristic) curve 
(False Positive Rate (FPR) vs. True Positive Rate (TPR)) and its 
partial AUC (Area Under the Curve), which is calculated from 
the partial area of an ROC curve. 

The low-resolution LIDAR used in the experiment was 
equipped on top of the rear-view mirror. The LIDAR could 
obtain the distance to a target at 10 fps. The vertical 
detectionangle was 6 degrees (1 degree pitch), and the horizontal 

TABLE I.      NUMBER OF POINT CLOUDS FOR EACH NUMBER OF SCAN HITS L 

  
    

Pedestrian 1,134 5,343 7,016   8,258 
Others 7,143 7,360 8,477 14,719 

TABLE II.      EVALUATED METHODS 

Method Conventional Proposed 1 Proposed 2 Proposed 3 
Feature Handmade [1,2] Voxel Voxel Voxel 

Classifier SVM 3DCNN 2DCNN 3DCNN 



detection angle was 40 degrees (0.1 degrees pitch). On the other 
hand, based on the sensor characteristics of the LIDAR, 

in (4) and  in (5) were provided by a preliminary 
experiment. 

Four methods were evaluated in this experiment as shown in 
TABLE II. Here, Handmade represents conventional handmade 
features proposed by K. Kidono et al [1]. and our previous 
work [2]. 

B. Results and discussions 

Figure 5 shows ROC curves (FPR < 10 %) of the 
experimental results, and TABLE III shows partial AUC (FPR 
< 10 %). It can be seen that TPR of proposed method 3 was 
higher than the other methods. Therefore, we confirmed that the 
proposed method 3 could detect pedestrians more accurately in 
low FPR (very important in pedestrian detection). Figure 6 
shows a sample of a True Positive (TP) and a False Positive (FP). 

As seen in Fig. 5, the voxel representation combined with 
SVM (Proposed 1) achieved relatively good results. This 
suggests that the voxel representation has a potential to describe 
the conventional handmade features. For example, the slice 
feature is obtained from the 3D object likelihood channel, and 
the distribution of reflection intensity can also be obtained from 
the reflection intensity channel. 

 Proposed method 3 showed significant improvement in 
comparison with the results from the conventional method. 
Therefore, the combination of the proposed voxel representation 
and 3DCNN is very effective to classify a sparse point-cloud. 
      Finally, the detection accuracy of proposed method 3 was 
higher than that of proposed method 2. From this result, we 

confirmed that it is effective for pedestrian detection to consider 
the 3D structure of a point -cloud. 

IV. CONCLUSION 
 This paper proposed a novel voxel representation that can 

be calculated from a sparse point-cloud to achieve pedestrian 
detection using 3DCNN. Specifically, to detect pedestrians 
accurately even if a point-cloud is sparse, two likelihood maps 
are calculated considering the distance and the reflection 
intensity of target objects. Then, point-clouds are converted into 
voxel representation using these likelihood maps.  The results 
showed that 3DCNN + the proposed voxel representation could 
detect pedestrians more accurately than the conventional method. 
In addition, the effectiveness of 3D convolution was confirmed. 

Future work includes the utilization of multi-frame 
information, improvement of the 3D object detection method 
and the network architecture. 
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Fig. 5.  ROC curves of each method by the number of horizontal scan hits L. 

TABLE III.      PARTIAL AUC OF EACH METHOD 

Method Partial AUC by L 
L = 3 L = 4 L = 5 L = 6 

Conventional 0.564 0.535 0.805 0.836 
Proposed 1 0.601 0.565 0.757 0.807 
Proposed 2 0.629 0.698 0.809 0.884 
Proposed 3 0.658 0.802 0.881 0.914 

       Conventional (Handmade [1,2]),          Proposed 1 (Voxel + SVM),
       Proposed 2 (Voxel +CNN),                  Proposed 2 (Voxel + 3DCNN)

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

Fig. 6. Sample of a True Positive and a False Positive 


