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Abstract— To robustly localize the pose of an ego vehicle
within a dynamic environment, it is important to model the
sensor measurements precisely, including changes in the envi-
ronment. This study describes the observation models developed
for localization performed in highly dynamic environments, and
presents the results of comparing these models. In this study,
four observation models, including our previously proposed
model, were compared by conducting a simulation. The models
had different ways of coping with changes in the environment,
and produced different results. Moreover, the comparison
results revealed that each model had its own advantages and
disadvantages. Finally, we demonstrated that our previously
proposed model can achieve satisfactory performance in terms
of computation complexity and estimation accuracy.

Keywords— Localization, Observation Model

I. INTRODUCTION

Vehicle self-localization, that is, a function to estimate an

ego vehicle’s relative pose on a given map, is fundamental for

automated driving. An observation model, which represents

sensor measurements probabilistically, is used to estimate

the pose. Because it is difficult to model the dynamics

of the environment, creating observation models that cope

with environmental changes is also difficult. However, real

environments change dynamically, owing to the movement of

dynamic obstacles and landmarks, as shown in Fig. 1. Hence,

it is not easy to perform robust localization in highly dynamic

environments. This paper considers observation models to

improve the robustness of localization against environmental

changes.

A sensor, e.g., light detection and ranging (LiDAR),

measures multiple data simultaneously, and the n-th sensor

measurement data at time t, ynt are generally formulated as

follows:

ynt = hhit(xt,m) + ent, (1)

where xt is the pose of the ego vehicle, m is the given map,

ent is the noise and/or error embedded in ynt, and hhit(·)
is a function that returns the expected sensor measurements

from the given pose. The error is basically modeled by a zero

mean Gaussian distribution. However, it is impossible to cope

with environmental dynamics when the error is modeled by a

single Gaussian distribution, because such dynamics cannot

be described by the single Gaussian distribution. Thus, the
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Fig. 1. Example of driving scene captured by camera mounted on ego
vehicle. The exact modeling of sensor measurements includes changes in
the environment, and this is significant for the robust localization of the ego
vehicle’s pose. This recognition result was reported by [1].

observation model is generally represented by a mixture of

distributions [2], [3]. Particularly in the beam model [3], a

probabilistic distribution with regard to observation against

dynamic obstacles is included. Additionally, Thrun et al.

has proposed a scan point rejection method, which might

be reflected by dynamic obstacles. Thus, the robot pose can

be estimated robustly, even if the robot is surrounded by

many dynamic obstacles [2], [4]. However, this assumes that

dynamic obstacles are equally disturbed in the environment

and that the landmarks do not move. In most cases, these

assumptions are not satisfied in real environments.

The sensor measurement error includes a component re-

garding the environment’s shape. It might be considered

that modeling the error in each area would improve the

performance. Several approaches toward modelling the error

by a mixture of simple distributions have been proposed,

such as the normal distributions transform (NDT) [5] and

the multiresolution Gaussian mixture model [6]. These ap-

proaches can flexibly model the error and improve the de-

scriptive ability of Equation (1). However, these approaches

do not correspond to high environmental dynamics because

the environmental space is divided into several individual

spaces, and the noise is modeled separately in each space.

Cao et al. proposed an approach toward error modelling

by using a penalized mixture of exponential power (PMoEP)

distributions [7]. The EP distribution is known as the gener-

alized error distribution and includes all normal and Laplace

distributions. Moreover, it includes all continuous uniform

distributions on the bounded intervals of the real line, as

limiting cases. Thus, the combination of EP distributions may

be capable of modelling any error.

We have proposed an observation model that explicitly
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considers the environmental dynamics [8]. In this model, a

single Gaussian distribution is used to model the error that

exists in Equation (1). In this study , an observation model

for describing the environmental dynamics was introduced.

In short, the model calculates the probality, while consid-

ering whether sensor readings are obtained from known or

unknown obstacles. Thus, it can cope with environmental

dynamics.

This paper presents the comparison and evaluation results

with regard to observation models constructed for localiza-

tion in dynamic environments. Additionally, the details of

these models are provided in this paper. The contribution

of this study is that it provides concrete comparison results

with regard to the observation models, and a discussion

of these models, which were used to obtain the presented

results. Moreover, the obtained results can be used to assist

the selection of an observation model for the purpose of

navigating dynamic environments.

The rest of this paper is organized as follows. Section II

provides a summary of related studies. Section III describes

the observation models used in this study. Section IV de-

scribes the implementation details. Section V presents the

results of evaluating and comparing the models by conduct-

ing a simulation. Section VI presents the conclusions drawn

from this study.

II. RELATED WORKS

To date, many types of localization approaches for au-

tonomous cars have been proposed [10]–[15]. Various types

of landmarks have been used for localization and automated

driving has been achieved. Thus far, various researchers

have assumed that the environment is static; however, this

assumption is not suitable to real environments. Therefore,

many researchers have tackled the localization problem in

dynamic environments.

A straightforward approach consists of improving the

observation model. In [2], an observation model that included

both known and unknown obstacles was proposed. This

model is known as a beam model [3] and is a combina-

tion of various distributions. A distribution represents the

probability of measurements regarding unknown obstacles.

To compute this probability, the ray tracing process, which

calculates expected distances measurable from a current

pose, is employed. One drawback of the beam model is

the heavy computational workload required for ray tracing.

The likelihood field model (LFM) has been proposed [3]

to overcome this problem. This model is able to efficiently

compute the probability. However, considering the influence

of dynamic obstacles is not easy because the ray tracing

process is omitted. Additionally, the beam and LFMs cannot

cope with landmark removal.

Other observation models for coping with dynamic obsta-

cles have been proposed [16], [17]. These models enable the

robust calculation of probability against dynamic obstacles.

However, it would be difficult to exactly estimate the ego

vehicle pose in areas where landmarks do not exist in

one side area. Yang et al. have proposed the feasibility

grids describing the dynamic environment facilitating the

representation of information both for a stationary object and

a moving object [18]. They introduced dual sensor models

and modeled sensor measurements for moving obstacles

by using feasibility grids. Our approach, which has been

presented in [8], can cope both with dynamic obstacles and

landmark removal, even if the ray tracing process is not

employed. Additionally, our approach can simultaneously

estimate the pose of the ego vehicle and dynamic obstacles

without other information about the occupancy grid map,

and without an increased computational cost. Cao et al. have

proposed an error modeling approach toward low rank matrix

factorization by using PMoEP distributions [7]. We introduce

a method of using this approach with regard to a localization

problem.

Another effective approach is to simultaneously estimate

both the ego vehicle’s pose and the environmental changes.

Montemerlo et al. have proposed a simultaneous estimation

approach toward pose and people tracking [19]. Approaches

toward the simultaneous estimation of the pose and en-

vironment map in dynamic environments have also been

proposed by several researchers [20]–[30]. Valencia et al.

have proposed a localization approach that consisted of

using a dual-timescale map, which enables the use of semi-

static obstacles as landmarks [31]. These approaches allow

autonomous cars to estimate their own pose by using a

fresh map that accurately models the current environment.

However, localization will fail when the map update process

fails. Thus, the reliability of simultaneously estimating the

pose and the environment map will be smaller than that

of single localization, in terms of system integration. Our

objective was to provide robust localization without the map

update process, so as to maintain high reliability.

III. OBSERVATION MODELS

In this study, we compared four observation models. This

section provides the description of each model.

A. Beam model and likelihood field model (LFM)

The beam model presented in [3] is expressed as follows:

p(ynt|xt,m) =









yhit
yshort
ymax

yrand









T

·









phit(ynt|xt,m)
pshort(ynt|xt,m)
pmax(ynt|xt,m)
prand(ynt|xt,m)









,

(2)

where yhit, yshort, ymax, and yrand are arbitrary coefficients,

whose sum must be equal to one. Additionally, phit, pshort,

pmax, and prand are the probabilistic distributions of the mea-

surement of known and unknown obstacles, measurement

of maximum distance, and random measurement values,

respectively. The details of each distribution can be found

in [3].

To ascertain whether the measurement of the n-th sensor

is obtained from known or unknown obstacles, the following
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condition has been reported by [3]:
∫

yshortpshort(ynt|xt,m)bel(xt)dxt
∫

p(ynt|xt,m)bel(xt)dxt

> χ, (3)

where bel(xt) is the previous distribution regarding the pose

at time t, and χ is the threshold. The measurement of the n-th

sensor is rejected when the above condition is satisfied, and

is not used to localize the pose. Practically, this equation is

computed approximately by using a sampling-based method.

The beam model has the drawbacks of high computational

cost and non-smooth probability distribution. To overcome

these drawbacks, the LFM is proposed. The LFM is the

mixture distribution of phit, pmax, and prand
1. We evaluated

the LFM with the scan points rejection method.

B. Normal distributions transform (NDT)

NDT [5] is an approximate representation method of point

clouds with a set of normal distributions. In this method, the

environment space is first divided into several spaces. Let

Pi = [pi0,pi1, ...,piM ]T be the points included in the i-th

space; the mean pm
i and covariance Σi are computed from

these points. The mean and covariance set is called the ND

map.

The probabilistic distribution regarding the measurement

of known obstacles using the ND map is expressed as

follows:

phit(ynt|xt,m) =

ξ exp

{

−
1

2
(pm

i − q(ynt))
T
Σ−1

i (pm
i − q(ynt))

}

,
(4)

where ξ is the normalization constant, q(·) is the function

that returns a point in the world coordinates corresponding

to ynt; p
m
i and Σi are the mean point and covariance corre-

sponding to the point returned by q(·). We evaluate the NDT-

based observation model by using the scan points rejection

method. The phit of LFM is substituted in Equation (4) when

the NDT-based observation model is used.

C. Conditional observation model (COM)

In our approach presented in [8], the sensor measurement

class cnt was introduced. Additionally, the pose of the ego

vehicle and the class were estimated simultaneously. The

probability distribution is expressed as follows:

p(ynt|xt,m) =

∫

p(ynt|xt, cnt,m)p(cnt)dcnt, (5)

where p(ynt|xt, cnt,m) is the observation model with a

certain condition. Thus, it is called the conditional obser-

vation model (COM). In this study, the model considers two

discrete classes, namely, C = {known, unknown}, and the

probability distribution is expressed as follows:

p(ynt|xt,m) =

p(ynt|xt, cnt = known,m)p(cnt = known)

+ p(ynt|xt, cnt = unknown,m)p(cnt = unknown)

(6)

1In the beam and LFM, a slightly different phit is used. For details please
refer to [3].

As expressed in the equation, we have two conditional ob-

servation models. Because the conditional observation model

of cn = known is given, the LFM is used. The conditional

observation model of cn = unknown is also given and

expressed as follows :

p(ynt|xt, cnt = unknown,m)

= ξ {maxknown − p(ynt|xt, cnt = known,m)} ,
(7)

where maxknown is the maximum value of p(ynt|xt, cnt =
known,m).

D. Penalized mixture of exponential power (PMoEP)

In the PMoEP model [7], the probabilistic distribution

regarding the error is expressed as follows:

p(ent|πt,ηt) ∝

K
∑

k=1

πktfpk
(ent; 0, ηkt), (8)

where πt = [π1t, π2t, ..., πKt]
T is the proportion of mixing

with πkt ≥ 0 and
∑K

k=1 πkt = 1, K is the number of the

mixture components, and fpk
(·) is the k-th EP distribution.

The k-th EP distribution (pk > 0) is expressed as follows:

fpk
(ent; 0, ηkt) =

pkη
1

pk

kt

2Γ( 1
pk
)
exp {−ηkt|ent|

pk} , (9)

where ηt = [η1t, η2t, ..., ηKt]
T is the precision parameter,

pk is the shape parameter, and Γ(·) is the Gamma function.

By changing the shape parameter, the EP distribution can

describe the leptokurtic (0 < p < 2), mesokurtic (p = 2),

and platykurtic (p > 2) distributions. In particular, the

Laplace, Gaussian, and uniform distributions are obtained

with p = 1, p = 2, and p → ∞, respectively. Moreover,

the error distribution is denoted as follows: p(ent|πt,ηt) =
2
∑K

k=1 πktfpk
(ent; 0, ηkt), because the error is defined only

in the positive region.

The assumption that each error ent is equipped with an

indicator variable znt = [zn1t, zn2t, ..., znKt]
T , where znkt ∈

{0, 1} and
∑K

k=1 znkt = 1, is introduced. znkt = 1 implies

that the error ent is drawn from the k-th EP distribution, and

that znt obeys a multinomial distribution. Thus, the following

distributions can be obtained:

p(ent|znt) =

K
∏

k=1

fpk
(ent; 0, ηkt)

znkt , (10)

p(znt) =
K
∏

k=1

πznkt

k . (11)

Et = [e1t, e2t, ..., eNt]
T , Zt = [z1t, z2t, ..., zNt]

T , and

Θt = {πt,ηt} are introduced, and the log-likelihood func-

tion regarding the errors can be expressed as follows:

ln p(Et|Θt) = ln
∑

Zt

p(Et,Zt|Θt), (12)
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where p(Et,Zt|Θt) is the complete probability function and

is expressed as follows:

p(Et,Zt|Θt) =

N
∏

n=1

K
∏

k=1

{πktfpk
(ent; 0, ηkt)}

znkt . (13)

Then, the complete log-likelihood function is expressed as

follows:

ln p(Et,Zt|Θt) =
N
∑

n=1

K
∑

k=1

znkt {lnπkt + ln fpk
(ent; 0, ηkt)} .

(14)

In the PMoEP model, the penalized log-likelihood function

is defined [9] and expressed as follows:

l(Θt) = ln p(Et,Zt|Θt)− P (πt), (15)

P (πt) = λNDf

K
∑

k=1

ln
ϵ+ πkt

ϵ
, (16)

where ϵ is a very small positive number, λ is a tuning param-

eter (λ > 0), and Df is the number of free parameters for

the k-th component. In the PMoEP model used in this study,

Df was set to the value of two for πkt and ηkt. The model

was solved by an expectation-maximization (EM) algorithm,

which implemented an iterative procedure. Additionally, we

note that Θ
(i)
t = {π

(i)
t ,η

(i)
t } is the estimation at the i-th

iteration.

In the E step, the responsibility γnkt is first updated on

the basis of Bayes’ theorem.

γ
(i+1)
nkt =

π
(i)
kt fpk

(ent; 0, η
(i)
kt )

∑K

l=1 π
(i)
lt fpl

(ent; 0, η
(i)
lt )

. (17)

Then, the Q function is formulated as follows:

Q(Θt,Θ
(i)
t ) =

N
∑

n=1

γ
(i+1)
nkt

{

ln fpk
(ent; 0, η

(i)
kt ) + lnπ

(i)
kt

}

− P (π
(i)
t ).

(18)

In the M step, Θt is updated by maximizing the Q function.

The update equations are obtained by taking the first deriva-

tive of Q with respect to πt and ηt, and finding the zero

points through the following equations:

π
(i+1)
kt = max

{

0,
1

1− λKDf

(

Nkt

N
− λDf

)}

, (19)

η
(i+1)
kt =

Nkt

pk
∑N

n=1 γ
(i+1)
nkt |ent|pk

, (20)

Nkt =

N
∑

n=1

γ
(i+1)
nkt . (21)

With the EM algorithm, the probabilistic distribution

regarding the p(ent|πt,ηt) error is obtained. Owing to

the distribution model error expressed in Equation (1), the

following relationship can be obtained:

phit(ynt|xt,m) = p(ent|πt,ηt). (22)

When the PMoEP-based observation model is used, phit of

LFM is substituted in Equation (22).

IV. IMPLEMENTATION

A. Probability calculation

Let Yt = [y1t,y2t, ...,yNt]
T be the sensor measurements

at time t. Then, the probability distribution p(Yt|xt,m) is

calculated as follows:

p(Yt|xt,m) =
N
∏

n=1

p(ynt|xt,m), (23)

under the assumption that each sensor measurement is inde-

pendent.

To calculate the probability by using the LFM and NDT,

we first separate the sensor measurements by using Equa-

tion (3). Then, the probability is calculated by using only

the accepted points, i.e., the points obtained from known

obstacles. However, when the probability is calculated by

using the methods described in subsection III-C and III-D,

the rejection algorithm is not used, because these methods

include a scheme for coping with environmental dynamics.

B. Sensor measurement simulation

In this study, we conducted a simulation to create two

dimensional (2D) light detection and ranging (LiDAR) mea-

surements. We used the UXM-30LAH-EWA scanning and

laser rangefinder (HOKUYO AUTOMATIC CO., LTD.) [32]

to simulate the 2D scan. This device has the following

specifications: maximum range of 80 m, scanning angle of

190 deg , and scanning angle resolution of 0.125 deg.

C. Scan point rejection

To compute Equation (3), the prior distribution of the pose

must first be defined. The pose consisted of a 2D point,

i.e., x and y, and the heading direction θ. We approximated

the prior distribution by using 200 particles with a Gaussian

distribution, and its standard deviations for the x, y, and θ

elements, were set to 0.1 m, 0.1 m, and 0.5 deg , respectively.

D. PMoEP

The precision parameter had to be provided in advance,

and p = [0.5, 1, 1.5, 2, 5, 10, 20]T was set. The maximum

number of iterations in the EM algorithm was set to 20, and

the turning parameter λ was set to the value of one.

V. COMPARISON AND DISCUSSION

A. Experimental conditions

To carry out the precise numerical evaluation of the obser-

vation models, we used a simulation environment. Figure 2

shows the experimental environment and its occupancy grid

map. First, we drove a vehicle equipped with a LiDAR and

applied the 2D grid SLAM reported by [33]. The resolution

of the map was set to 0.1 m. Additionally, we built the ND

map based on the SLAM result, and its resolution was set

to 1 m.

We used two occupancy grid maps. The first map, which

is called the simulation map, was used to simulate the 2D

scan, while the second one, called the landmark map, was

used to calculate the probability. To evaluate robustness

2218



110 m

Fig. 2. Experimental environment (left) and its occupancy grid map (right).

against environmental changes, randomly moving dynamic

obstacles were added to the simulation map. Additionally,

we attempted to carry out verification in the case where the

occupied grids were randomly removed from the simulation

map. In this study, we evaluated four observation models;

namely, LFM, COM, NDT-based models, and PMoEP-based

models. In this section, these models are respectively noted

as LFM, NDT, COM, and PMoEP.

B. Comparison

Figure 3 shows the comparison result, where the occupied

grids were not removed from the simulation map. The top

figure depicts the landmark map (black), and the laser scan

points plotted from the ground truth pose (red). It should be

noted that the simulation map was identical to the landmark

map. The scan points that did not hit the landmarks depict the

dynamic obstacles. The bottom figures show the probability

distributions calculated by using each observation model

around the ground truth (in 0, 0). The probability values were

normalized from 0 to 1. ∆x and ∆y are the differences in

relation to the ground truth. In this comparison, the heading

angle θ was not changed. As can be seen in the bottom

figures, the probability distributions calculated with the COM

and PMoEP created a peak around the ground truth.

Figure 4 shows the comparison result with approximately

95 % of the occupied grids having been removed from

the simulation map at random. The top figure depicts the

simulation map in green color. Even though the occupied

grids were removed, the probability distributions calculated

with the use of the COM and PMoEP also created a peak

around the ground truth. Additionally, the probability dis-

tribution calculated by the PMoEP was more accurate than

that of other probability distributions. These results revealed

that the PMoEP could robustly and accurately estimate the

pose of the ego vehicle in a dynamic environment. However,

each model had a disadvantage. The observation models are

discussed below.

C. Discussion

1) LFM: In the compared models, LFM is the simplest

one. However, this model works in many cases. In partic-

ular, by using the scan point rejection method, a robust

probability calculation against dynamic obstacles could be

achieved. However, LFM was not robust against landmark

removal because it did not have a describable model for the

removal. Moreover, the scan point rejection method based

on Equation (3) did not correspond to the removal because

Ground truth pose

L
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e
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h
o
o
d

L
ik
e
li
h
o
o
d

Fig. 3. Comparison result with occupied grids remaining in the simulation
map.

it assumed that the landmarks were static. Therefore, LFM

is not useful in environments where the landmarks move

frequently. For the same reason, the NDT is also not useful

in such environments.

Additionally, the performance of the scan point rejection

method decreased when the prior distribution regarding the

pose, i.e., the distribution of particles, was uncertain. To

avoid a decrease in performance, the particles were clustered

and the scan point rejection method was applied to each

cluster. However, this leads to more complex problems, such

as unsupervised clustering, as has been reported in [34].

2) NDT: As can be seen in Figs. 3 and 4, NDT exhibited

the worst performance, in comparison with the rest of the

models, owing to the low resolution of the ND map. Figure 5

shows the probability distributions calculated by the LFM

and NDT with a different resolution ND map. We conducted

this evaluation without landmark removal, because the scan

point rejection method could not cope otherwise. However,

the dynamic obstacles were set to the simulation map. When

the resolution of the ND map was set to 0.1 m or 0.2 m, the

observed performance was acceptable. However, the perfor-

mance decreased with the decrease of resolution. The use of
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Fig. 4. Comparison result with occupied grids randomly removed from
simulation map.

a very high-resolution map, e.g., 0.05 m, resulted in inferior

performance, because it would lose the representability of

suitable measurement errors.

The memory usage clearly increased when the high-

resolution ND map was used. To obtain better performance

than LFM, the resolution should be set to less than 0.5 m.

However, this requires larger memory usage in comparison

with that required by the occupancy grid map. The low

resolution ND map enables the reduction of memory size,

but results in decreased accuracy. Additionally, to update the

ND map, a management process that is more complex than

that of the occupancy grid map is required [35]. Finally, there

exists a trade-off problem with regard to LFM and NDT.

3) COM: The COM provided good performance in the

two comparison cases shown in Figs. 3 and 4. Even though

the COM attempted to simultaneously estimate the pose of

the ego vehicle and the class of the sensor measurements,

its computational complexity was identical to that of the

LFM because the class estimation and probability calculation

could be carried out within the same computational loop.

Additionally, the COM could cope both with the dynamic

obstacles and landmark removal because a descriptive model
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Fig. 6. Error modeling results in PMoEP. Top and bottom figures
correspond to results shown in Figs. 3 and 4, respectively.

for the environmental changes was included.

A drawback of COM is that the model describing the

changes in the environment is very imprecise. Ray trac-

ing was used to calculate Equation (3). Thus, the existing

probability for dynamic obstacles could be modeled by an

exponential distribution. However, a uniform distribution

was used to model the existing probability in the COM.

Consequently, ray tracing could be omitted in the COM, and

the time required for computation was reduced. Additionally,

the COM corresponded to landmark removal. However, the

COM could not produce a relatively high probability around

the ground truth because it used the uniform distribution

to represent the existing probability of dynamic obstacles.

Therefore, the COM failed to localize the ego vehicle’s pose

when the initial guess regarding the pose was not accurate.

4) PMoEP: Figure 6 shows the error of the PMoEP

results. The top and bottom figures correspond to the results

shown in Figs. 3 and 4, respectively. The red and blue lines

depict the modeling results corresponding to the maximum

and minimum probabilities, while the green lines indicate

the rest of the modeling results. As can be seen in the

figures, various modeling results were obtained and it was

demonstrated that the modeling result did not provide the

maximum probability when the probability of zero error was

the highest. In the case shown in Fig. 4, the modeling result

provided the maximum probability when the probability of

zero error was the lowest. These results revealed that suitable

error modeling can improve the robustness of calculating the

probability against changes in the environment.

Although PMoEP provided a fairly accurate estimation, it

had the drawback of requiring heavy computation. Table I

lists the number of iterations performed by the EM algorithm,

and the computation time in ms. In this experiment, an

Intel(R) Xeon(R) CPU E5–1650 v3@3.50 GHz was used,
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Fig. 5. Probability distributions calculated using LFM (top left) and NDT with different resolution ND map.

TABLE I

RESULTS REGARDING NUMBER OF ITERATIONS IN THE EM ALGORITHM

AND COMPUTATION TIME (MS).

Without landmark removal With landmark removal

Min 1 (2.95 ms) 1 (2.92 ms)

Max 19 (44.46 ms) 18 (43.12 ms)

Ave 8.08 (19.68 ms) 7.56 (18.27 ms)

Std 4.65 (10.90 ms) 4.77 (11.05 ms)

and the computation was carried out in a single thread. The

results without and with landmark removal correspond to the

results shown in Figs. 3 and 4. The mean value of the time to

compute the probability with the PMoEP was approximately

20 ms. In our experience, the time required to compute the

localization process must be less than 100 ms to achieve

estimation in real-time. Therefore, using the PMoEP-based

observation model for sampling-based localization is rather

difficult. However, the rest of the compared models can be

used for real-time estimation.

The distributions of the number of iterations around the

ground truth are shown in Fig. 7. The number of iterations

around the ground truth was not observed to be consistently

smaller in comparison with that in the far areas. These results

revealed that the computation time could not be reduced,

even if the accuracy of the initial guess regarding the pose

was increased. In other words, an acceleration method for

the PMoEP is required for practical usage.

Finally, the comparison results are summarized in Table II.

We concluded that the COM is suitable for localization

in highly dynamic environments, in terms of computation

complexity and estimation accuracy2.

2The attached video shows the localization performance of the LFM and
COM (https://www.youtube.com/watch?v=PIvBexeZcOw).
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Fig. 7. Number of iterations in the EM algorithm around ground truth.

TABLE II

SUMMARY OF COMPARISON RESULTS.

Dynamic Landmark Memory Computation Estimation accuracy

obstacles removal usage time in dynamic environments

LFM ⃝ × ⃝ ⃝ △

NDT ⃝ × △ ⃝ △

COM ⃝ ⃝ ⃝ ⃝ ⃝

PMoEP ⃝ ⃝ ⃝ × ⊚

VI. CONCLUSION

This paper presented the results of comparing the obser-

vation models developed for localization in highly dynamic

environments. In this study, four observation models were

compared; namely, the LFM, NDT-based model, COM, and

PMoEP-based model. The conclusions drawn from this study

are as follows:

• The LFM may correspond to dynamic obstacles and

work in many cases, but it cannot correspond to land-

mark removal and/or movement.

• The NDT cannot correspond to landmark removal,

but can increase the estimation accuracy when a high

resolution ND map is used. However, the memory usage

increases as the resolution increases.

• The COM can correspond to both dynamic obstacles
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and landmark removal. Additionally, its computational

complexity is identical to that of the LFM. We con-

cluded that the COM is suitable for localization in

highly dynamic environments in terms of computational

complexity and estimation accuracy.

• The PMoEP can accurately estimate a pose of an ego

vehicle, even when the environment changes signifi-

cantly. However, the PMoEP has a drawback in terms

of computation time, and an acceleration method is

required for use in practical situations.

We are also tackling a problem regarding the reliability

estimation of a vehicle localization result to guarantee the

localization performance [36]. The reliability estimation ap-

proach includes the error recognition of the localization result

by using a machine learning approach. In future work, we

will apply an exact observation model to error recognition.
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