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Abstract— Nowadays, development of driving support sys-
tems and autonomous driving systems have become active.
Pedestrian detection from in-vehicle sensors is one of the most
important technologies for these systems. However, outputs
of pedestrian detectors can not be fully trusted in real en-
vironments. Therefore, we propose an estimation system of
pedestrian detector’s reliabilities for a given scene. This paper
proposes a scene-wise reliability calculation method for LiDAR-
based detectors, and a construction method for their estimators.
Here, the problem is how we can define the reliability. The
proposed method defines the reliability considering oversights
as the strictest threshold without oversights. Meanwhile, it
defines the reliability considering false detections as the loosest
threshold without false detections. Experimental results showed
that the proposed method could properly represent the relia-
bility of a given scene, and estimate their reliability.

I. INTRODUCTION

In this paper, we address the problem of estimating how
much the output of a pedestrian detector can be trusted for
a given scene.

Nowadays, development of driving support systems and
autonomous driving systems have become an active research
topic. The main focus of these systems is to reduce traffic
accidents. Especially, overlooking pedestrians directly links
to deadly accidents, so pedestrian detection from in-vehicle
sensors is one of the most important technologies for these
systems.

Accordingly, various attempts to detect pedestrians from
in-vehicle cameras have been made [1], [2]. In addition,
pedestrian detection using LiDAR has been actively re-
searched with the growing interest in automatic driving
systems [3]–[8].

However, outputs of pedestrian detectors can not be fully
trusted in real environments. For example, in the case of
using a camera, the detector could not detect pedestrians
in difficult scenes as shown in Fig. 1; Figure 1(a) is an
example of a scene with blown out highlights due to lens
flare. There are two pedestrians at the left front, but the
pedestrian detector could not detect them. Figure 1(b) is an
example of clipped shadows. There are two pedestrians at
the right front, but the pedestrian detector will not be able
to correctly detect them. As described above, the output of
a detector can not be completely trusted. Thus, in order to
make proper use of the pedestrian detection technology, we
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(a) Blown out highlights. (b) Clipped shadows.

Fig. 1. Examples of difficult scenes for detection with a camera.

need to consider the reliability of a detector for a given scene,
in addition to its output.

Likewise, there are difficult situations in the case of
pedestrian detection using a LiDAR. Here, there are two
kinds of difficult situations for a detector; oversights and false
detections as shown in Fig. 2. Figure 2(a) is the full view of
a scene, and Fig. 2(b) and Fig. 2(c) are examples showing
each of the difficult situations. Details of each situation are
described below.

• Difficult situations due to oversights
Figure 2(b) is a magnified view of the right front part
of Fig. 2(a). It is an example where a pedestrian exists
close to a wall. The arrow indicates the pedestrian. Such
a pedestrian will most likely be integrated with the
wall in the detection process, and will be overlooked.
However, such situations exist often in practice, so if
a vehicle travels trusting the detector’s output, it could
lead to a serious accident. On the other hand, it may
be possible to take actions such as running carefully if
the information that oversight is likely to be occurring
is provided to the driver.

• Difficult situations due to false detections
Figure 2(c) is a magnified view of the left front part
of Fig. 2(a). It is an example where there are many
structures similar to pedestrians. The arrows indicate
such structures. In this case, there are many rod-
shaped structures. A detector will most likely detect
such pedestrian-like structures as pedestrians. Such false
detections will obstruct smooth traveling.

As discussed above, information on the reliability of a
detector is very important. If we can estimate the reliability
of a detector directly from the input independent of its
output, safer autonomous driving and driver assistance can be
realized. For example, the system can slow down when the
reliability considering oversights is low, because there may
be oversights. Moreover, the system can lower the urgency
of the detection result when the reliability considering false
detections is low, because unnecessary stops will increase
the risk of accidents. As a matter of fact, a number of

2018 21st International Conference on Intelligent Transportation Systems (ITSC)
Maui, Hawaii, USA, November 4-7, 2018

978-1-7281-0322-8/18/$31.00 ©2018 IEEE 3511



(a) Full view. (b) Close to large structures such as a wall. (c) Existing pedestrian-like structures such as poles.

Fig. 2. Examples of difficult scenes for detection with a LiDAR. (Bottom right images are corresponding camera images for reference.)
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Fig. 3. Proposed framework.

techniques to estimate the reliability have been developed for
sensor fusion [9]–[11]. However, they are techniques for the
reliability of the sensor itself or inputs. Therefore, we pro-
pose a framework for estimating the reliability of a LiDAR-
based pedestrian detector for a given scene. In the following
sections, we present the definitions of scene-wise reliabilities
(probability of oversight and misdetection) of a detector. The
proposed framework is shown in Fig. 3. It is composed of
two steps; a learning step (Fig. 3(a)) and an estimation step
(Fig. 3(b)). The learning step calculates the reliabilities and
constructs reliability estimators. In the estimation step, the
constructed estimator estimates the reliability of the detector
directly from a given scene, and the system outputs it with
the detection results.

This paper is organized as follows: Section II introduces
the definition of reliabilities in detail. Section III explains the
details of constructing the reliability estimator. Experimental
results and discussions are presented in Section IV. Finally,
Section V summarizes the paper.

II. DEFINITION OF SCENE-WISE RELIABILITIES
OF A DETECTOR

In this section, we introduce the definition of scene-wise
reliabilities of a detector.

As errors in pedestrian detection, there are oversights
and misdetections of non-pedestrian objects in the output
of a pedestrian detector. Thus, when the number of these
errors are small, we can say that the reliability of the
detector for a given scene is high. The metric of reliability
considering oversights indicates the degree of reliability in
correctly detecting pedestrians, namely, the extent to which
the oversights do not exist. On the other hand, the metric of

reliability considering false detections indicates the degree
of reliability considering misdetections, namely, the extent to
which false detections do not exist. Each kind of reliability
will be described in detail below.

A. Reliability Considering Oversights

Firstly, the detection rate (recall) can be considered as the
metric representing the degree of reliability considering over-
sights. A scene with lower recall will have more undetected
pedestrians, so the scene will have more oversights. Thus, a
scene with high recall can be considered as highly reliable.
So recall can be used as the metric for the reliability consid-
ering oversights. However, since recall is difficult to calculate
from a single scene, we propose a metric approximating it
as follows.

A detector’s threshold where the number of oversights is
minimized is expressed as follows.

To = max{arg min
t

NFN(t)} (1)

Here, t is a detector’s threshold normalized in the range of
[0.00, 1.00], and NFN(t) is the number of false negatives
(oversights). An example of the change in the number of true
positives with changing the threshold t is shown in Fig. 4(a).
As shown here, in general, the number of positive detections
increase with lower (looser) threshold values, and decrease
with higher (tighter) threshold values. The output from a
lower threshold will include more false detections, so we
can say that To (the maximum threshold value with minimal
oversights) is better if its value is higher. Therefore, To is
used as the reliability considering oversights as follows.

Ro = To (2)
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(a) Oversights.
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(b) False detections.

Fig. 4. Reliability metrics.

B. Reliability Considering False Detections

Meanwhile, precision can be considered as the metric
representing the degree of the reliability considering false
detections. A scene with lower precision will have more
false detections, so the scene will have more fake detections.
Thus, a scene with high precision can be considered as
highly reliabile. So precision can be used as the metric for
the reliability considering false detections. However, since
precision is difficult to calculate from a single scene, we
propose a metric approximating it as follows.

Next, a detector’s threshold where a false detection occurs
is expressed as follows.

Tf = min{arg min
t

NFP(t)} (3)

Here, t is a detector’s threshold normalized in the range
of [0.00, 1.00], and NFP(t) is the number of false posi-
tives (false detections). An example of the change in the
number of false positives with changing the threshold t is
shown in Fig. 4(b). As explained in Section II-A, in general,
results with higher (tighter) threshold values will include
more oversights. Conversely, oversights will be avoided with
lower (looser) threshold values, so we can say that Tf (the
minimum threshold value with minimal false detections) is
better if its value is lower. Therefore, inverted Tf is used as
the reliability considering false detections as follows.

Rf = 1− Tf (4)

III. RELIABILITY ESTIMATION

In this section, we describe the proposed scene-wise
reliability estimation method.

The proposed scene-wise reliability estimator extracts sev-
eral features from the point cloud of a given scene measured
by a LiDAR and outputs the estimated reliability. Here,
following the methology of general detection tasks, we first
extract sets of points by clustering as pre-processing. We
defined two types of features representing a scene, namely
global features and pedestrian-like features, both described
below. Both features are extracted from each cluster and
in the end concatenated into a 271 dimensions vector. The
reliability regressors of the estimators for (2) and (4) are
constructed using ε-SVR (Epsilon Support Vector Regres-
sion) with RBF (Radial Basis Function) kernel. They are
trained with these features as input and reliabilities as output.

Note that the coordinate axes are the X-axis in the horizontal
direction, the Y-axis in the depth direction, and the Z-axis
in the height direction.

A. Global Features

The following four features are extracted as global features
from each cluster, and in the end concatenated into a 118
dimensions vector.

• 3D covariance matrix
Calculated from the three-dimensional covariance ma-
trix of each cluster’s centroid. Since this is a 3 × 3
diagonal matrix, six elements eliminating duplicates are
used as features.

• 3D moment
Calculated from the three-dimensional moment of each
cluster’s centroid. Six elements eliminating duplicates
are used as features.

• Distance to candidate
Calculated from the set of distances to all of the
clusters’ centroid. To represent the statistics of this set,
the median, mean, and standard deviation are used. In
addition, a histogram of distances to all points projected
onto the X-Y plane is used as feature. The histogram is
composed of 100 bins with 1 m interval.

• Number of points
Calculated from the number of points in each cluster.
The mean, median, and standard deviation of these
values are used as feature.

B. Pedestrian-like Features

The following three features are extracted as pedestrian-
like features from each cluster, and in the end concatenated
into a 153 dimensions vector.

• Statistics for tall objects
Generally, pedestrians have a tall shape. Therefore, the
ratio of clusters whose height is larger than the width
and the depth when the cluster is represented by a
rectangular solid is used as the feature. In addition, the
areas of each cluster projected onto the X-Y plane are
used. The mean, median, and standard deviation of these
metrics are used as features.

• Statistics for heights
Calculated from the maximum, minimum, centroid, and
height (maximum − minimum) of the Z coordinates
of points in each cluster. The mean, median, standard
deviation, and histogram of these values are used as
features. The histograms of the position (maximum,
minimum, centroid) are composed of nine bins with
0.5 m interval. Only the histogram of the height is
composed of ten bins with 0.5 m interval.

• Statistics for reflection intensity
Calculated from the maximum, minimum, mean, and
median of the reflection intensity of points in each
cluster. Their histograms are composed of 25 bins and
used as features.
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LiDAR

Fig. 5. Experimental vehicle

IV. EXPERIMENTS

To confirm the effectiveness of the proposed method,
experiments on scene-wise reliability estimation were con-
ducted by using actual point clouds measured using a LiDAR
as input.

A. Experimental Conditions

To acquire point clouds, we prepared a vehicle that
mounted Velodyne LiDAR HDL-64e on the roof as shown
in Fig. 5. The vehicle traveled through urban areas during
the day time, and obtained 17 sequences composed of 3,871
frames. Each experiment was carried out with a leave-one-
out cross-validation scheme where one sequence was used
for evaluation and the others for learning.

In this experiment, pedestrians with no occlusion within
approximately 40 m from the sensor were targets for the
detection, which were annotated manually.

B. Pedestrian Detector

As pre-processing, road plane removal and clustering
using Euclidean distance were performed for candidates
extraction. Next, these candidates were classified whether
they were pedestrian or not by a classifier. The pedestrian
classifier used in this experiment was constructed with Real
AdaBoost [12]. The following 225 dimensions feature was
used for this.

• Features proposed by Kidono et al. [3]
213-dimensional features.

• Features proposed by Liu et al. [13]
Seven-dimensional features based on eigenvalues.

• Additional features
Five-dimensional features. (The height of the cluster, the
maximum and minimum of the Z coordinate of each
point, the area in the X-Y plane, the median of the
intensity of each point.)

C. Validity of the Proposed Reliabilities

Here we present an experiment to confirm the validity of
the proposed reliabilities described in Section II.

The proposed method defined “threshold where over-
sights or false detections are minimized” as reliabilities. For
evaluation of these criteria, the thresholds in each frame
were calculated with the pedestrian detector constructed in

Section IV-B. Note that the pedestrian detector applied to
each sequence was trained with other sequences. In addition,
clusters extracted from the pre-processing were used for
evaluating oversights and false detections.

As an example, the result from sequence #14 is shown in
Fig. 6. The threshold of the detector is in the range of [0.00,
1.00]. Figure 6(a) shows the maximum thresholds without
oversights defined in (1) for each frame. As mentioned in
Section II-A, we can say that outputs from scenes with
higher threshold values can be trusted. On the other hand,
Figure 6(b) shows the minimum thresholds without false
detections defined in (3) for each frame. As mentioned in
Section II-B, we can say that outputs from scenes with lower
threshold values can be trusted. Note that blanks in Fig. 6(a)
are frames with no pedestrian to be detected.

From Fig. 6, we can see that the threshold changes across
frames in accordance with the change of scene following
the travelling of the vehicle. A frame indicated by a solid
circle in Fig. 6(a) is shown in Fig. 7(a) as an example of
a low reliability scene considering oversights. A pedestrian
existing near a wall, so it was difficult to detect. Similarly,
a frame indicated by a dotted circle in Fig. 6(a) is shown in
Fig. 7(b) as an example of a high reliability scene consider-
ing oversights. A pedestrian existing in an open intersection,
so it was easy to detect.

Meanwhile, a frame indicated by a solid circle in Fig. 6(b)
is shown in Fig. 7(c) as an example of a low reliability
scene considering false detections. Since there were many
structures similar to pedestrians such as poles, trees, and so
on, false detections were likely to occur. Similarly, a frame
indicated by a dotted circle in Fig. 6(b) is shown in Fig. 7(d)
as an example of a high reliability scene considering false
detections. Although there are trees along the street, they
were easy to be separated from pedestrians because they were
few and thin.

As described above, we confirmed the validity of the pro-
posed reliabilities. In the remaining part of the experiments,
the reliabilities calculated here are used as ground truths.

D. Effectiveness of the Proposed Reliability Estimation

Here we present an experiment to confirm the effectiveness
of the proposed reliability estimator described in Section III.
The estimators were constructed with the reliabilities calcu-
lated in Section IV-C as ground truths. Note that the estima-
tors for each sequence were learned with the reliabilities of
other sequences.

As a result, the proposed estimator could estimate the
reliability considering oversights with 0.055 mean absolute
error, and that considering false detections with 0.033 mean
absolute error. As an example, the estimation result for
sequence #14 is shown in Fig. 8. From Fig. 8(b), we can
see that the reliability estimator considering false detections
was able to estimate quite well. Meanwhile, from Fig. 8(a),
we can see that the reliability estimator considering over-
sights failed to estimate well when the reliability decreased
drastically. The following two reasons could be the cause for
this.
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(a) Considering oversights.
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(b) Considering false detections.

Fig. 6. Thresholds where oversights or false detections are minimized.

• Lack of features
Features leading to oversights such as integration of
clusters were lacking.

• Insufficient amount of training data
The reliability considering oversights is calculated from
only frames including pedestrians, so the size of the
training data was insufficient.

V. SUMMARY

In this paper, we focused on the problem that outputs
from pedestrian detectors can not be fully trusted in real
environments. Considering this, we defined reliabilities of
detectors for a given scene, and proposed a method to
construct a scene-wise reliability estimator. The proposed
method defined the “threshold where oversights or false
detections are minimized” as scene-wise reliabilities.

To demonstrate the effectiveness of the proposed method,
experiments were conducted by applying the proposed
method to actual point clouds measured from a LiDAR.
The experimental results showed that the definitions of
reliabilities were reasonable, and that the proposed estimator
can estimate the reliabilities properly.

For future work, we need to extend features of the relia-
bility estimator for more accurate estimation. For example,
rather than outputting a global reliability for a scene, we
may calculate estimation features and the reliability of local
regions. Furthermore, we should also design a method that
considers the final detection results considering the reliabil-
ity.
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(a) Low reliability scene considering oversights due to large structures. (b) High reliability scene considering oversights due to open space.

(c) Low reliability scene considering misdetections
due to existence of similar objects.

(d) High reliability scene considering misdetections
due to inexistence of similar objects.

Fig. 7. Examples of scenes with low and high reliabilities.
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(a) Considering oversights.

����

����

����

����

����

����

� �� ��� ��� ��� ��� ��� ��� ��� ���

�	
�	��
���

��
���	�����

�����
���

�
��
��
�
���
��
	


�
�

�
�
��
��
�

��
�

�	
�
��
�

��
�
�

	
��
�
�

(b) Considering false detections.

Fig. 8. Estimated reliabilities.

3516


