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Abstract. What target is focused on by many people? Analysis of the
target is a crucial task, especially in a cinema, a stadium, and so on. How-
ever, it is very difficult to estimate the gaze of each person in a crowd
accurately and simultaneously with existing image-based eye tracking
methods, since the image resolution of each person becomes low when
we capture the whole crowd with a distant camera. Therefore, we in-
troduce a new approach for localizing the gaze target focused on by a
crowd of people. The proposed framework aggregates the individually es-
timated results of each person’s gaze. It enables us to localize the target
being focused on by them even though each person’s gaze localization
from a low-resolution image is inaccurate. We analyze the effects of an
aggregation method on the localization accuracy using images capturing
a crowd of people in a tennis stadium under the assumption that all of
the people are focusing on the same target, and also investigate the effect
of the number of people involved in the aggregation on the localization
accuracy. As a result, the proposed method showed the ability to improve
the localization accuracy as it is applied to a larger crowd of people.

1 Introduction

Gaze estimation from an image is very useful for various applications. Gaze can
tell us how a person looks into things to buy, which object s/he is interested in,
and so on. Therefore, there are many studies focusing on human gaze estima-
tion [1–5]. In a situation where many people gather in a space such as a cinema
or a stadium, it is valuable to analyze where the people, i.e. a crowd of audi-
ence or spectators, are looking at. Here, each person’s gaze is independent and
there are many objects to be focused on by the people. So, we can assume that
the more people look at a particular object simultaneously, the more potentially
valuable, or interesting, the object is. Therefore, there is a strong demand to
analyze a crowd of people looking at the same object simultaneously.

To analyze where a crowd of people is looking at, we need to observe all the
members simultaneously. From the viewpoint of cost and convenience, rather
than employing eye trackers, it is desired to estimate where they are looking at
from an image capturing the whole crowd. One very simple solution is to capture
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Fig. 1. Example of a situation that the proposed method assumes.

each person in high-resolution from many cameras. However, this is difficult to
implement. Instead, capturing the whole crowd by one camera is a more realistic
solution. However, in this case, the face image of each person becomes small in
size, so we can only obtain their face images in low-resolution.

Therefore, our goal is to localize a gaze target focused on by a crowd of
people from one image captured from a distant camera position (Figure 1). Since
detailed information for each face or pair of eyes cannot be extracted from such
an image, gaze estimation from the images with low-resolution will be inaccurate.
Nevertheless, as shown in Figure 2, when many people in the crowd are focusing
on a common target, even if the gaze estimation result for each person is not
accurate, their gaze target could be localized accurately by combining individual
estimates. Based on this assumption, we propose a novel framework to localize
the gaze target by aggregating the gaze estimation results of each person in the
crowd.

For simplicity, in this paper, we will consider the simplest situation where
all of the people in the crowd are focusing on a common object that exists on a
two-dimensional space such as a screen or a ground.

Based on the analysis of the relationship between the number of people in a
crowd and the localization accuracy, this paper reveals that this relationship has
a positive correlation. Existing studies using the gazes of a group of people [6–8]
have not analyzed this relationship, but this revelation shows that we can obtain
more accurate results if we applied the method to a larger crowd.
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Fig. 2. Concept of improvement in the gaze localization accuracy by aggregating gaze
estimations of a crowd of people.

Our contributions can be summarized in the following twofolds:

1. Proposal of a novel method to localize a common gaze target focused on by
a crowd of people.

2. Analysis on the relationship between the number of people involved in the
aggregation and the localization accuracy in images capturing a crowd of
people in a tennis stadium.

2 Related Works

2.1 Gaze Estimation Methods for One Person

There are many studies focusing on human gaze [1–3, 9, 10]. They improve lo-
calization accuracy, robustness for illuminative change, and so on. Most of these
studies have focused on the gaze estimation for one person whose face image
is captured in high-resolution. However, as we mentioned in Section 1, to ana-
lyze where a crowd of people is focusing on, it is necessary to observe all the
members simultaneously, in which case, each person will be captured in low-
resolution. Therefore, we cannot apply such gaze estimation methods for our
purpose.

Meanwhile, some researchers have proposed gaze estimation methods for
low-resolution images. Ono et al. focused on the gaze estimation from eye im-
ages [11]. In their case, the error in the position of a cropped eye region sig-
nificantly increases the gaze estimation errors, which becomes more prominent
with low-resolution images. To improve the estimation accuracy in such cases,
they proposed a method considering the variations in the eye region’s appear-
ance related to three factors; gaze directions, positionings, and image pixels, by
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using 3-mode SVD (Singular Value Decomposition) [12]. Although this method
improves the gaze estimation accuracy for low-resolution images, in their evalu-
ation, eye regions in low-resolution images were detected based on the positions
detected from high-resolution images capturing the same people. Hence, this
method may not be able to estimate the gaze direction accurately directly from
low-resolution images captured in our scenario because the eye region detection
from low-resolution images is a very difficult task.

Meanwhile, Tawari et al. proposed a gaze estimation method which approxi-
mates the face direction as gaze direction based on the assumption that the gaze
direction is distributed around the face direction [13]. Although this method im-
proves the gaze estimation accuracy, the effect of approximation is limited; with
extremely low-resolution images, the face direction estimation is also inaccurate.

2.2 Analysis on the Gazes of Many People

There are two types of existing studies that analyze the gazes of many people;
One analyzes the gazes of many people sharing time and space and the other
analyzes those of many people sharing only space.

For the former type, Park et al. focused on joint attention and estimated the
objects focused on by a group of people [6]. They assume a situation when sev-
eral people are wearing a head-mounted camera. Here, by using Structure from
Motion (SfM) [14], each camera’s position and pose are estimated. Then, each
person’s gaze is approximated by the camera’s position and pose. However, this
assumption is practically suited for only few people because of the requirement
of the head-mounted cameras. Park et al. also attempted to reduce the number
of people wearing the camera [7]. They estimate where the group of people are
focussing on from only one head-mounted camera, by learning the relationships
between the position of each person and his/her gaze target. In the estimation,
the objects focused on by a group of people are estimated from the position of
each person detected from the images captured by the head-mounted camera. It
is very convenient since it only requires each person’s position. However, when
people follow an object with their head and eyes, without moving their positions,
such as keep seating in a fixed position, this approach will not work properly.

Meanwhile, for the latter type, Sugano et al. proposed to estimate attention
maps for videos displayed on a public display by aggregating people’s gaze po-
sitions measured by a single fixed camera [8]. This approach can be applied for
localizing where many people are focusing on in the display. However, it is diffi-
cult to be directly adopted to our research since they assume a situation where
people approach the display, and thus high-resolution images of their faces can
be collected. Also, it can accumulate the images many times and can improve
the estimation accuracy by analyzing the accumulated gazes of many people
because videos can be repeatedly displayed on a public display.
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Fig. 3. Overview of the proposed method.

3 Gaze Target Localization for a Crowd of People

Hereafter, the locations of people and targets are represented in world coordi-
nates. In the situation where many people gather in a space such as a cinema
or a stadium, they are usually seated in a fixed position and observe some tar-
gets from there. In general, the positions of the seats in the world coordinate
can be pre-measured. Also, each person’s face usually exists above his/her seat.
The region in the images captured by a fixed camera can also be pre-measured.
Therefore, we assume if a person is detected from an image captured by a fixed
camera, the position of his/her seat can be roughly specified. With this assump-
tion, the detected face images can be mapped to the world coordinates.

Figure 3 shows the overview of the proposed method which consists of two
phases; the training phase and the localization phase. In the training phase, a
gaze angle estimator f(x; Θ̂) is trained. In the localization phase, the proposed
method estimates the gaze angle aj of each person j in a crowd, localizes the
gaze point, aggregates them, and outputs the common gaze point ĝ of the crowd.
Before explaining the proposed method, we formulate the problem to localize a
common gaze point ĝ focused on by a crowd of people.

3.1 Formulation

Given a set of M face images X = {x1, x2, ..., xM} of a crowd, localizing their es-
timated gaze point ĝ can be formulated as a problem finding g which maximizes
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Fig. 4. Face and gaze positions in the world coordinate system.

p(g|X; Θ), where Θ represents the set of parameters of the gaze estimation. By
assuming that the prior probability p(g) of the gaze point g follows a uniform
distribution, it can be replaced by a constant C. We also assume that p(g|xi; Θ),
xi = 1...M , are independent from each other. With these assumptions, Eq.(1) is
derived from Bayes’ theorem.

p(g|X; Θ) =
1

C

∏
i

p(g|xi; Θ). (1)

By taking the logarithm of this equation, the log likelihood of the gaze of the
crowd can be calculated. Finally, localizing their gaze point ĝ can be formulated
as

ĝ = arg max
g

∑
i

log(p(g|xi ; Θ)). (2)

3.2 Training Phase

Firstly, from training images Itrain = {I1, I2, ...}, which are images capturing
a crowd of people, faces are detected and cropped. For the face detection, we
used a face detecter based on multi-task cascaded CNNs proposed by Zhang et
al. [15]. The cropped face images are resized to W ×H [pixels], and the resized

face images {xi}Qi=1 are used for training the gaze angle estimator. Q represents
the number of the detected faces.

Then, the parameters Θ of the gaze angle estimator f(xi; Θ) are learned by
using training data T = {(xi, ri)}, where ri = (ry, rp)

T represents the gaze angle
from the center of his/her face (face position κi) with the yaw angle ry and the
pitch angle rp of the gaze angle, as shown in Figure 4. Here, the gaze angle is
calculated as the summation of face orientation and gaze direction angles. The
function f is modeled as a Convolutional Neural Network (CNN) trained with
this training data T . With regard to the loss function, we employ the mean
squared error loss function defined as

L(Θ) =
1

Q

Q∑
i=1

(ri − f(xi; Θ))2. (3)
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In the training phase, parameters which minimizes L(Θ),

Θ̂ = arg min
Θ

L(Θ) (4)

are searched as the optimal solution using the Adaptive Momentum (Adam)
method [16].

3.3 Localization Phase

The localization phase commences in the same fashion as in the training phase,
with M faces detected from an input image capturing a crowd of people. The
detected faces {dj}Mj=1 are resized to W ×H [pixels], and input to the trained

gaze angle estimator f(xi; Θ̂). Then, a gaze angle

aj = (ajy, ajp)
T = f(dj ; Θ̂) (5)

is calculated for each face image. Here, ajy represents the yaw angle of his/her
gaze, and ajp the pitch angle of his/her gaze. As a result, a gaze point gj =

(gjx, gjy, Z)T can be calculated based on the gaze angle aj and the face position
κj = (wj , lj , hj) of each person as the point where the vector from the position
of the face center and the plane with height Z crosses.

In general, even if the result of the gaze angle estimation is not correct, the
true angle is likely to be nearby the result. Therefore, we assume that p(g|dj ; Θ̂)
follows the normal distribution N (gj , σ

2). By assuming this, Eq.(2) is equivalent
to

ĝ = arg max
g

−
M∑
j=1

(g − gj)
2

2σ2
− log

√
2πσ2

 = arg min
g

M∑
j=1

(g − gj)
2, (6)

where M is the number of the detected faces. Then, it can be solved as

ĝ =
1

M

M∑
j=1

gj = g. (7)

As a result, a common gaze point of the crowd g = (gx, gy, Z)T is output.

4 EVALUATION

4.1 Dataset Construction

Although there are some public datasets including face images with the ground
truth of the gaze direction [9, 17–20], most of them were recorded under con-
trolled laboratory conditions, and there is also no dataset including images cap-
turing many people in a frame. Therefore, we constructed a dataset by capturing
96 participants including men/women with/without glasses in a tennis stadium.
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Fig. 5. Capture setting.

The ratio of both conditions were half and half. All participants signed an agree-
ment form that allows us to use the images capturing them for research purpose.
Each participant sat on one of the predefined spectator seats and was requested
to focus on the same target on the tennis court (Z = 0) following instructions
from a facilitator. These instructions did not include any restriction except for
the focus target. All participants focused on the target in a natural way. Fig-
ure 5 shows the capture setting. We defined the center of the tennis court as
the origin of the world coordinates, the Y-axis directing to the spectator seats,
and the Z-axis directing upwards from the origin, in a right-handed coordinate
system.

Figure 6 shows the positions of the gaze targets, and Figure 7 shows the
series of identification numbers assigned to the targets. The spectator seats are
located toward the upper side of the figures. We defined 22 targets on the tennis
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Table 1. Number of images in the dataset.

Target ID Camera 1 Camera 2 Target ID Camera 1 Camera 2

1 269 270 12 306 304
2 313 314 13 319 319
3 297 297 14 259 256
4 293 294 15 290 289
5 302 302 16 286 288
6 301 301 17 313 313
7 261 262 18 293 293
8 272 272 19 296 296
9 295 296 20 273 272
10 297 299 21 281 279
11 286 287 22 293 294

Total 6,395 6,397

750 cm

600 cm

600 cm

300 cm 200 cm

137 cm

548.5 cm 640 cm

411.5 cm

Spectator seats

Fig. 6. Positions of the gaze targets.
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Fig. 7. Identification numbers of targets.

court (Z = 0) distributed over the area where tennis players usually play. The
target was actually a box with a size of 16 cm long, 16 cm wide, and 15 cm
high. We captured participants focussing on a target with two cameras fixed on
the opposite side of the spectator seat. Each camera5 was fixed at a height of
121 cm and 126 cm from the ground, respectively. One captured 48 participants
and the other one captured the other 48 participants. There was no overlap in the
participants captured by each camera. Camera parameters were as follows: 1,280
× 1,024 pixels, 15 fps, 8 bits color, and the focal length of the lens was 138 mm
in the 35 mm equivalent focal length. Figure 8 is an example of the captured
images. Table 1 shows the number of images in the constructed dataset.

4.2 Dataset Analysis

Every image in the dataset includes 48 people. Figure 9 shows the number of
faces detected from each image in the dataset. This revealed that at least 24

5 We used Flea3 (FL3-U3-13E4C-C) cameras produced by Point Grey Research.
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Fig. 8. Example of the captured image (camera 1).
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(b) From camera 2.

Fig. 9. Histograms of the number of detected faces per frame.

faces could be detected from each image. The range of horizontal and vertical
sizes of the detected faces were between 20 and 68 pixels, and 24 and 95 pixels,
respectively. In total, 226,298 face images were detected from images captured
by camera 1, and 228,441 by camera 2.

We annotated the face images with gaze angles based on the position of the
detected face and the location of the target focussed on by them. The range of
the annotated gaze angle was [−74.02, 74.02] in yaw angle, and [−20.09, −3.01]
in pitch angle.

4.3 Experimental Settings

First, we separated the images into two groups: images captured by camera 1,
and images captured by camera 2. One group was used for training, and the other
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was used for evaluation, alternately. There was no overlap in the participants
and they were cross-validated.

In the training phase, all pairs of detected face images and their gaze angles
in the training data were used. All pairs of mirrored face images and their gaze
angles were also used for training. Specifically, 552,596 pairs for camera 1 and
556,882 pairs for camera 2 were used. Considering that if the people are suffi-
ciently far from the cameras, the gaze angle of every person in each captured
image can be approximated as the same, since in our dataset, the distances
between participants and cameras were quite far compared with the distance
between participants, we trained only one estimator to estimate the gaze angle
of all the participants.

As the gaze angle estimator, we used LeNet-5 [21], which was originally
designed for the classification of very low-resolution images. To change the task
from classification to gaze angle estimation, the number of units in the output
layer was modified to two units corresponding to aj = (ajy, ajp)

T and also the
activation layer of the output was changed to hyperbolic tangent. The gaze angles
were normalized to the range [0, 1].

In the evaluation phase, all images capturing a crowd of people in the evalu-
ation data were used. From each evaluation image, face images of many people
are detected, and the trained gaze angle estimator outputs the gaze angle for
each face image. The position of each participant’s seat can be calculated from
the capture settings. With an assumption that each person’s face is positioned
75 cm above the seat level, the face position κj can also be calculated in the
world coordinate system. Therefore, gaze points of all the face images are esti-
mated based on the geometry in Figure 4, and are aggregated by the proposed
method.

We analyzed the relationship between the number of people involved in the
aggregation and the localization error. Concretely, we aggregated the estimated
gaze points while increasing the number of face images from 1 to 24. If more
than 24 face images were detected, those with higher scores in the face detection
were preferentially selected. We evaluated the method by the Mean Absolute
Error (MAE), which is calculated as the distance between the estimated gaze
point of the crowd and the position of the ground-truth target.

In the evaluation, we chose the result without aggregation (equivalent to
the case when the number of people involved in the aggregation is only one) as
the baseline. As a comparison method, we chose an aggregation method using
median instead of average as in Eq.(7). By assuming that p(g|dj ; Θ̂) follows the
Laplace distribution, the solution of Eq.(2) can be calculated by the median of
the estimated gaze points gj for the detected face images dj as similar to Eq.(6),

ĝ = median
j=1,...,M

gj = ǵ, (8)

where the median is calculated as vector median [22]. As a result, a common
gaze point of the crowd ǵ = (ǵx, ǵy, Z)T is output.
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Fig. 10. Results of the proposed aggregation method.
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Fig. 11. Results of the worst and the best reduction in MAE.

4.4 Results

Figure 10 (a) shows the transition of reduction in MAE while increasing the
number of people involved in the aggregation. The score shows the reduction
rate from the case where the number of people is one (baseline). The results
reveal that both aggregation methods based on Eq.(7) and Eq.(8) improved the
gaze localization accuracy by increasing the number of people, but the proposed
method showed a larger reduction in MAE than the comparison method. The
reduction in MAE from the baseline was 25.73 % by aggregating the estimation
results from 24 people. In particular, while the MAE was 13.99m for the baseline,
it decreased to 10.39m by aggregating the estimation results from 24 people.

Figure 10 (b) visualizes the reduction in MAE per target by aggregating
the estimation results from 24 people. The color of each target indicates the
reduction in MAE. Note that before the visualization, the reduction in MAE
were normalized to the range [0, 1]. The worst reduction in MAE was obtained
for target 21. Even so, the reduction in MAE reached 10.27 % by aggregating
the estimation results from 24 people. Moreover, the best reduction in MAE
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Fig. 12. Results along the X-axis.

which was obtained for target 19 reached as high as 49.33 % from the baseline.
Figure 11 shows the results which showed the worst and the best reduction in
MAE.

5 Discussions

Figure 10 revealed that the gaze localization accuracy was improved by increas-
ing the number of people involved in the aggregation. In this section, we confirm
the details of the results.

5.1 Number of People Involved in the Aggregation

Although Figure 10 shows that the reduction in MAE increases in proportion to
the number of people involved in the aggregation, the gain saturates at around
10 people. We consider that this is caused by the distribution of the gaze estima-
tion results; although the proposed method expects that the estimation results
isotropically distribute around the ground truth, this may not be true. In such
a case, the aggregated results will not approach the ground truth but rather
approach a biased center of the distribution. We will need to improve the aggre-
gation method considering this problem in order to further improve the results.

5.2 Results along Each Axis

The reduction in MAE for each target showed different behaviors along each
axis. Figures 12 (a) and 13 (a) show the results along the X-axis and the Y-
axis of the world coordinates, respectively. The reduction in MAE for the X-axis
and the Y-axis were 49.78 % and 18.95% by aggregating the estimation results
from 24 people, respectively. We consider that the difference was caused by the
significant difference of the ranges of the gaze angle; while the range of the yaw
angle (corresponds to the estimation accuracy of the X-axis) was [−74.02, 74.02],
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Fig. 13. Results along the Y-axis.

the range of the pitch angle (corresponds to the estimation accuracy of the Y-
axis) was only between [−20.09, −3.01], the latter being eight times smaller than
the former. The appearance of the faces along the Y-axis changes little and the
estimation is more difficult than that along the X-axis. Therefore, the estimation
along the Y-axis had larger bias than that along the X-axis.

Figures 12 (b) and 13 (b) visualize the reduction in MAE for each target
along the X-axis and the Y-axis by aggregating the estimation results from 24
people, respectively. These figures show that the reduction in MAE of the farther
targets behave differently along the X-axis and the Y-axis; along the Y-axis, the
reduction in MAE of the farther targets were low, while along the X-axis, the
proposed method also improved that of the farther targets. We consider that
this difference occurred since the proposed method is robust to the variance of
gaze estimation results but not to the bias; along the Y-axis, the bias of the
estimation results was too large to approach the ground truth, while along the
X-axis, the proposed method could approach the ground truth.

In summary, if the estimation results have a too large bias, the proposed
method could hardly approach the ground truth, since the proposed aggregation
method did not have sufficient robustness to deal with it. An aggregation method
with a higher robustness to a large bias should increase the reduction in MAE.

6 Conclusion

In this paper, we proposed a novel method for localizing a common gaze point
focused on by a crowd of people. We also constructed a dataset including images
capturing many people looking at a target. An evaluation using the dataset
showed that the proposed method could improve the localization accuracy by
aggregating the gaze estimation results from a crowd of people.

In future work, we plan to propose an aggregation method more robust to the
estimation results with larger bias by employing a machine learning framework,
and also deal with situations where multiple gaze targets exist. We also plan to
extend the method to localize the gaze targets in the three-dimensional space.
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