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Abstract— In this study, we attempt to establish the numer-
ical safety criteria for negotiating blind corners in personal
mobility vehicles (PMVs). Safety should be the most impor-
tant consideration in designing autonomous PMVs. However,
determining the suitable trade-off between safety and speed is
a weighty concern because speed is significantly compromised
when performing overly safe navigation. We analyze the driving
behavior of a robotic PMV operated by a human driver.
The robotic PMV can measure the driver’s gaze, and allows
us to recognize both the pose of the PMV and the driver’s
visual attention on a 3D map. As a result, the occluded areas
for the driver can be estimated. Then, potential colliding
hazard obstacles (PCHOs) are simulated based on the occlusion.
PCHOs refer to occluded obstacles that the driver encounters
suddenly with which he cannot avoid collision. The participants
of our experiments were one skillful and three non-skilled
ones. Experimental results demonstrate that similar PCHOs
are observed even when the driving styles of the participants
are different. Additionally, the existence of a boundary that
distinguishes expected and unexpected obstacles is indicated by
investigating the parameters of the PCHOs. Finally, we conclude
that the boundary could be utilized as a numerical criterion
for ensuring safety while negotiating blind corners.

I. INTRODUCTION

There is a trade-off relationship between safety and speed

in path and motion planning problems for the autonomous

navigation of personal mobility vehicles (PMVs). Although

safety should be the paramount consideration, speed and

smoothness are significantly compromised when performing

overly safe navigation. However, determining the suitable

trade-off parameters of these factors is challenging, because

it is difficult to numerically recognize the criteria for ensuring

safety. In this study, we attempt to indicate the numerical

safety criteria for PMVs negotiating blind corners.

Although humans can determine reasonable trade-off pa-

rameters based on personal experiences, there could be po-

tential colliding hazard obstacles (PCHOs) even when blind

corners are carefully navigated because of the occlusion.

“PCHOs” refer to obstacles that suddenly appear from the

occlusion, with which it is impossible to avoid collision. Nev-

ertheless, drivers do not be overly conscious to the PCHOs

because smoothly negotiating blind corners is equally de-

sirable. Our conjecture is that humans empirically have a

boundary that divides expected and unexpected obstacles
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Fig. 1. 3D attention simulation with the robotic PMV (top) and a
visualization sample of the simulated driver’s visual attention on the 3D
map (bottom). Dead angle areas are estimated, and PCHOs are simulated.

when negotiating blind corners, and such a boundary could

be utilized to establish the numerical criteria for ensuring

safety. This work determines this boundary by observing the

attention of drivers on a three-dimensional (3D) map.

We developed a wheelchair-based robotic PMV for this

work. The PMV can measure the driver’s gaze, enabling us

to recognize both the pose of the PMV and the driver’s gaze

on the 3D map. We simulate the driver’s visual attention

on the 3D map using this information. Figure 1 shows the

PMV (top) and a visualization example of the simulated

driver’s visual attention prior to negotiating a blind corner

(bottom). The occluded areas for the driver are estimated on

the 3D map. Based on the occluded areas, we also simulated

PCHOs to investigate unexpected obstacles. The participants

of the experiments were one skilled and three unskilled

drivers. Experimental results show that similar PCHOs are

observed by all the participants despite the differences in

driving style. Additionally, investigating the parameters of

the PCHOs indicates the existence of a boundary between

the expected and unexpected parameters of the PCHOs.

Finally, we concluded that this boundary can be utilized

as a numerical boundary for ensuring safety for PMVs

negotiating blind corners.
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The contributions of this work are twofold:

• We developed methods to simulate driver’s attention and

PCHOs on the 3D map.

• Numerical criteria that could distinguish expected and

unexpected obstacles and could be utilized as a numer-

ical boundary for ensuring safety in blind corners is

designed.

The rest of this paper is organized as follows. Section II

provides an overview of related works. Section III describes

the robotic PMV and the method for analyzing the driver’s

visual attention. Section IV details the experimental proce-

dure, and presents the results. Section V is the conclusion.

II. RELATED WORKS

This section briefly summarizes works related to path and

motion planning around blind corners and the analysis of the

driver’s gaze.

A. Path and motion planning around blind corners

The majority of path and motion planning studies are

preoccupied with determining the path or motion sequence

that allows robots to quickly arrive at a destination without

collision; an example of such research endeavors is [1]. It

is, however, not easy to develop a perfect solution, because

there is a trade-off relationship between safety and speed.

In recent years, many studies have explored various factors

toward determining the solution, e.g., [2]. Although, there

are many factors that enable advanced navigation of PMVs, a

more complex trade-off dynamic will emerge. Unfortunately,

it is necessary to manually adjust the trade-off parameters,

which is a time-consuming task.

Some authors have proposed autonomous navigation meth-

ods that prioritize the riding comfortability of the passenger

in a wheelchair as a means of ensuring safety. Morales et

al. posited that visibility and comfortability are related, and

proposed a path planning method that computes visibility

using a 3D LiDAR [3]. Sawabe et al. proposed a velocity

control method based on visibility, and confirmed that the

proposed control method could lower passengers’ stress [4].

Additionally, they analyzed passenger stress characteristics

with different stress factors using two physiological indices,

heart rate and galvanic skin response sensors, during the

usage of autonomous wheelchairs [5]. These works demon-

strated that suitable path planning and velocity declaration

are useful for improving ride comfortability. However, their

methods do not take the driver’s visual attention into con-

sideration when determining the trade-off parameters.

In the field of intelligent vehicles, similar researches have

been conducted on visibility by several authors. Takeuchi

et al. proposed a traffic prediction method using a high

definition map [6]. In the method, obstacles that may spring

out from blind corners are modeled using a particle fil-

tering algorithm, and the linear velocity of the obstacles

are estimated. Muffert et al. presented a warning system

using stereo vision-based obstacle detection for supporting

the negotiation of roundabouts [7]. Hörmann et al. proposed

a safe strategy for automated left-turn maneuvers in a case

where the field of view is partially occluded [8]. Using sensor

measurements, these works estimate the states of obstacles

that may potentially collide with an ego-vehicle; however,

data are not acquired from humans.

A previous study by our group, Morales et al., analyzed

the behavior of cars driven by skillful drivers negotiating

blind corners, and modeled the velocities of the moving

obstacles that may spring out from the corner [9]. Yoshihara

et al. proposed a planning method that uses a model to

determine the suitable velocity deceleration [10]. In [9], the

parameters of the obstacles were determined based on the

trajectory and velocity profiles estimated by the 3D local-

ization method presented in [11], [12]. In these works, the

attention of the drivers was not fully taken into consideration

during obstacle modeling.

Learning-based methods, such as inverse reinforcement

learning and end-to-end navigation, can be used to simu-

late the driving styles of skillful drivers [13]–[16]. These

methods basically receive the sequence of behavior or raw

sensor measurements, and learn the relationships between the

input data and driving styles. Hence, these methods do not

explicitly take the driver’s visual attention into consideration.

B. Analysis of driver’s gaze

Because there is a significant link between the driver’s

gaze and driving behavior, many authors have analyzed

driver’s gaze [17], [18].

In [19], [20], convenient methods that do not use glasses to

track the driver’s gaze were presented. In [20], their system

is evaluated on a dataset collected from natural on-road

driving in urban streets and freeways. Doshi et al. analyzed

the significance of the driver’s gaze during driving [21].

They also created a saliency map based on the surrounding

traffic characteristics of the ego-vehicle, and demonstrated

the capability of the proposed methodology to improve driver

attention and behavior, as well as intent prediction. However,

they do not analyze the driver’s visual attention in a 3D

geometric space, because a 3D geometric map was not

available in their work.

Miyajima et al. analyzed the relationship between the

drivers’ gaze and negative adaptation to automated driving,

i.e., trusting too much in the automated car’s ability [22].

This approach attempts to extract characteristics related to

negative adaptation by analyzing the driver’s gaze. On the

other hand, the approach presented in this work attempts to

extract the criteria for efficient autonomous navigation by

analyzing the gaze.

In [23], [24], Hirayama et al. posited that drivers of

ego-vehicles naturally look at cars that will overtake them;

they analyzed the temporal relationships between the driver’s

gaze and the surrounding vehicle behaviors for detecting

the driver’s distraction. In these methods, the surrounding

situation of the ego-vehicle was measured using only on-

board sensors because map information was not available.

Some authors have presented 3D attention visualization

and gaze tracking methods [25], [26]. In these approaches,

camera- or RGB-D-camera-based SLAM methods, such as
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those presented in [27], [28] were used to build 3D maps.

Rhinehart et al. proposed an activity-forecasting method

based on inverse reinforcement learning using a first-person

video sequence [29] by extending the work presented in

[30]. In our approach, we use a 3D geometric map and a

localization method for estimating the driver’s gaze, and the

gaze, as projected on the 3D map, is utilized for analyzing

potential hazards for the driver.

III. SIMULATION OF DRIVER’S VISUAL ATTENTION AND

POTENTIAL COLLIDING HAZARD OBSTACLES

A. Wheelchair-based robotic PMV

Top of the Fig. 1 shows the developed wheelchair-based

robotic PMV that allows us to recognize driver’s eye-gaze

on a 3D map. The PMV is equipped with wheel encoders,

a 3D LiDAR, and an IMU to build a 3D map, and to

localize its own pose on the map. The PMV is also equipped

with a driver-facing motion capture system1. The driver

wears eye-gaze tracking glasses2. Motion capture markers are

attached to the glasses, and the motion capture system tracks

the markers. Because the motion capture system tracks the

markers, we calibrate a rigid body composed of the markers

and a camera attached to the glasses (eye-tracking camera).

All of the measurement devices are calibrated off-line, i.e.,

transformation matrices between the devices are available3.

Finally, the PMV performs the localization, and the direction

of the driver’s gaze can be obtained on the 3D map.

B. Simulation of driver’s visual attention

To simulate the driver’s visual attention on the 3D map,

as shown in the Fig. 1, we first build a 3D map of the

target environment. Because we conducted the experiments

indoors, a 2D SLAM method presented in [31] is first used

for building a consistent 2D map. The 3D map is built

by plotting the point cloud obtained using the 3D LiDAR

according to the trajectory estimation conducted with the

2D SLAM. To efficiently handle the 3D map, the OctoMap

presented in [32] is used. The method presented in [33] is

used for localizing the pose of the PMV.

To simulate the driver’s visual attention, we first obtain the

pose of the eye-tracking camera and the gaze direction on

the 3D map frame. We then perform ray casting on the 3D

map around the eye-gaze direction, and obtain the hitpoints

on the 3D map as a point cloud. The unmapped obstacles

measured by the 3D LiDAR are added to the OctoMap

before ray casting. Bottom of the Fig. 1 shows a visualization

example of the simulated driver’s visual attention. Based

on [34], the raycasting horizontal and vertical angles were

respectively set to 90 and 60 degrees. The resolution of

the ray-casting angle was set to 1 degree. This attention

simulation is performed according to the measurement cycle

of the 3D LiDAR, i.e., 10 Hz. Finally, we obtain the occluded

areas for the driver through the attention simulation.

1https://optitrack.com/products/v120-trio/, accessed
at 8 April 2019.

2https://www.tobiipro.com/product-listing/

tobii-pro-glasses-2/, accessed at 8 April 2019.
3Calibration between the measurement devices were manually done.
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Fig. 2. Coordinates of the eye-tracking camera (left) and an example of
the depth map built on the basis of the simulated driver’s attention (right).
Red and blue denote long and short distances.

C. Obstacle visibility check

We check the visibility of the obstacles that may be

candidates of PCHOs. We assume that obstacles exist all of

free spaces where objects can exist. To check the visibility,

we first build a depth map in the eye-tracking camera frame

using the point cloud obtained via attention simulation. Fig-

ure 2 illustrates the coordinates of the eye-tracking camera,

and provides an example of the depth map. The origin and

horizontal and vertical axes of the depth map are respectively

the origin of the eye-tracking camera and pitch angle of

the eye-gaze direction, ϕp, and angle between the eye-gaze

direction and the xz-plane, ϕd.

We assume that the shape of the obstacles is approximately

represented by a cylinder, and the height, h, and diameter,

d, are regarded as their parameters. Several points of the

obstacle in the map frame, pm
o , are transformed into the eye-

tracking camera frame; they are denoted by p
c
o =c Tmp

m
o .

Where cTm is a transformation matrix from the map frame to

the eye-tracking camera frame, and p
c
o is the obstacle point

in the eye-tracking camera frame. If the distance of the depth

map related to p
c
o, di, is shorter than the distance between

the eye-tracking camera and the obstacle, di < ||pm
o −x

c||2,

the obstacle is categorized as invisible, i.e., it is located in the

occluded areas. Where x
c is the eye-tracking camera’s pose

in the map frame and || · ||2 is an operator of the l2-norm.

In experiments, the obstacle parameters, h and d, were set

to 1.8 m and 0.6 m. An obstacle is categorized as visible

based on 14 points; the obstacle is categorized as invisible

if all the points are invisible.

D. Simulation of PCHOs

Obstacles categorized as invisible are treated as candidates

of PCHOs and possibility of collision with the PMV is simu-

lated. Figure 3 demonstrates how to simulate the parameters

of the PCHOs. We first predict pose of the PMV if the PMV

does immediate stop as:

t
′

= tf + tb,

d
′

= df + db,

df = vttf ,

tb = vt/(µg),

db = v2t /(2µg),

(1)
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Fig. 3. Simulation of potential colliding hazards

Fig. 4. Environment maps. (left) geometric map (right) free space map. It
should be noted that the geometric map has height information (3D points).

where tf and df are free running time and distance, tb and db
are braking time and distance, vt is the current linear velocity

of the PMV, and µ and g are the friction coefficient and

gravitational acceleration, respectively. In this work, static

parameters, tf , µ, and g, were set as tf = 0.5 s, µ = 0.9,

and g = 9.8 m/s2. By using t
′

and d
′

, the PMV’s pose after

time t
′

is predicted.

Then, the possibility of the PMV colliding with the

invisible obstacles is computed. We assume that the obstacles

linearly move towards the front of the PMV. The obstacles

that can make it to the front of the PMV without colliding

with the objects located in the 3D map are detected as the

PCHOs. We compute the linear velocity, vo, and the collision

angle, θc, of the PCHOs, and these parameters are used

for analyzing driving behavior. The linear velocity of the

obstacles is computed by dividing the distance from the front

of the PMV to the obstacle by t
′

.

IV. EXPERIMENTS

A. Experimental environment

We conducted the experiments in an indoor office-like

environment. Figure 4 shows the 3D (left) and free space

(right) maps of the environment. The 3D map is used for

localizing the pose of the PMV, and simulating the driver’s

visual attention. The white color represents the free space,

and is used for simulating the PCHOs.

B. Condition of participants

The participants are one skillful and three non-skilled

drivers. A skillful driver (SD) is a person who drives the

PMV often. A non-skilled driver (NSD) is a person who is

not used to driving the PMV. The participants are familiar

with the environment because they work in the environment.

Additionally, all the participants have a Japanese driving li-

cense, i.e., they passed the vision test required for the license.

The gender-age of the SD, NSD1, NSD2, and NSD3 are

male-28, male-40, female-40, and female-41, respectively.

Before the experiments, the following instruction was given

to the participants: “Please carefully drive the PMV while

confirming safety with your eyes.”

C. Results by the skillful driver

We first analyzed the driving of the SD. Figure 5 shows

the analysis results in the clockwise (CW) direction. The

top figure shows the estimated trajectory of the eye-tracking

camera; the colored portions represent the PMV’s linear

velocity and eye-gaze behavior. The bottom figure shows the

PCHOs. It should be noted that there were several PCHOs

in each computation cycle (10 Hz); however, we selected

the PCHO with the slowest linear velocity for easy analysis.

Figure 6 enlarges the area A, shown in the Fig. 5. In Fig. 3,

the size and color of the circles represent the linear velocity

of the PCHOs, vo, and collision angle, θc, shown. The radius

of the circles is denoted as vo/25 m.

Additionally, the top of Fig. 7 shows the eye-gaze angles in

the 3D LiDAR frame during negotiation of the blind corner

shown in Fig. 6. These angles are denoted as:

Yaw = − tan−1(yl/xl),

Pitch = tan−1(zl/xl),
(2)

where p
l = (xl, yl, zl) is a hit point of the eye-gaze

direction with the 3D map in the 3D LiDAR frame. Positive

regions of Yaw and Pitch angles represent right and top

sides, respectively. These angles consider translational and

rotational movements of the eye-tracking camera and are

differ from angles shown in the Fig. 2. These results indicate

that although the SD carefully checked both the left and

right sides, there were PCHOs. However, these PCHOs are

regarded as non-realistic obstacles because they have non-

realistic parameters. For example, the PCHOs that have

the potential to collide with the PMV from the front have

significantly fast velocity, typically over 30 m/s. On the other

hand, it is considered an accident for the SD, if there is a

side collision with the PCHOs, or if the PCHOs have a large

collision angle, or do not have large velocity. We therefore

regarded these PCHOs as unexpected obstacles for the SD.

D. Results by the non-skilled drivers

We then analyzed the driving of the NSDs in the CW

direction. Top figures of the Fig. 8 show the estimated tra-

jectories of the eye-tracking camera and eye-gaze behaviors.

Figure 7 also shows the eye-gaze angles of the NSDs as they

negotiate the blind corner shown in Fig. 8. As can be seen

from these figures, driving and eye-gaze behaviors of each

driver was unique. In particular, the variance of the eye-gaze

angles of the NSD2 was obviously smaller than that of the

other drivers. Nevertheless, similar PCHOs were observed in

their results. Additionally, the parameters of the PCHOs are

also non-realistic, as described in IV-C.
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Fig. 5. SD’s results in CW direction. The top figure shows the estimated
trajectory of the eye-tracking camera and indicates the driver’s focus of
attention. The dashed lines depict the gaze direction of the driver. The
bottom figure shows the predicted poses of the PMV and the PCHOs. The
size and color of the circles depict the linear velocity of the PCHOs and
the collision angle shown in Fig. 3. The dashed lines shown in the bottom
depict the possible paths of the PCHOs.

As we mentioned in III-C, perception simulation for

PCHOs was performed using the depth map built on the

basis of the simulated driver’s attention. In the perception

simulation, we did not consider the performance differences

of central and peripheral visions. Additionally, we assumed

that the drivers can perceive all the occluded obstacles,

if they locate the field of view, and all the drivers have

the same perception ability. These assumptions may be

considered as the reason why similar PCHOs were observed.

Therefore, we discuss the validity of the experiments using

these assumptions in IV-F.

E. Safety criteria

Figure 10 shows the relationship between the collision

angle and linear velocity of the PCHOs obtained across all

the experiments. This figure also includes the CCW direction
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Fig. 6. Enlarged figures of the area A, shown in Fig. 5.

results; each participant drove thrice in both the CW and

CCW directions. Figure 9 shows examples of the results

obtained for the CCW driving in the area A. The Fig. 10

shows that there is a boundary, drawn with the black line.

As abovementioned, the PCHOs are regarded as un-

expected obstacles for the drivers. We therefore consider

that the upper region of the boundary indicates the set

of unexpected obstacles during driving, and the PCHOs

included in the area should be ignored to realize human-

like autonomous navigation. Moreover, it is necessary for the

PMVs to perform path and motion planning that recognizes

the PCHOs that do not appear in the bottom areas of the

boundary. Such planning will closely mirror human planning

that as it efficiently ignores unexpected obstacles. Finally,

we conclude that the boundary could be used as numerical

criteria for ensuring safety in PMVs’ autonomous navigation.

F. Discussion

We assumed that all the participants possess equal visual

perception ability. We also ignored the performance differ-
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Fig. 7. Gaze angles in the 3D LiDAR frame during negotiation of the
blind corner shown in Figs. 6 and 8.

ences of the central and peripheral visions. However, the

different performances of these visions have been presented

[35], [36]. These assumptions are not suitable for exact

analysis, however the modeling of the human’s detection and

perception ability is a significant task [37]. Hence, we briefly

discuss the validity of the perception model used in this work.

Many studies related to the visual function of overlooking

in traffic situations mainly focus on the object detection

ability, e.g., [38]. The ability to detect the movement of

objects in peripheral vision is considered an important factor

for ensuring the driver’s safety [39], [40]. The role of the

peripheral vision in detecting relative movement is the par-

ticipant of a recent research [41]. These works showed that

the peripheral vision can efficiently detect moving objects.

It is well known that habituation is useful for improv-

ing skills [42]. Because the environment is familiar to

the participants, they could quickly discern changes in the

environment. Furthermore, as previously stated, we had told

the participants to carefully drive the PMV while confirming

safety with their eyes. This information could be regarded

as a pre-cue that makes the participants alert to obstacles.

The effectiveness of the pre-cue in enabling the participants

to quickly respond to the target stimulus was shown [43].

Hence, it could be surmised that the participants quickly

detected moving objects even when they existed in the

peripheral vision field thanks to the pre-cue.

We focused on analyzing the driver’s visual attention prior

to negotiating blind corners. Because almost all the areas of

the field of view were occupied as dead angle, as shown in

Fig. 1, the peripheral vision may not always be important

in predicting the PCHOs. Furthermore, all the participants

focused on the blind areas across the central vision field

before entering the corner, as shown in Fig. 7. We therefore

concluded that although the simple visual condition for

obstacles was used, the experiments retained their validity.

V. CONCLUSION

In this study, we attempted to establish the numerical

safety criteria for PMVs while negotiating blind corners. We

analyzed the driving behavior of a robotic PMV operated by

a human driver. The PMV can measure the gaze of the driver,

and localize its own pose. Using the PMV, we simulated

the driver’s visual attention and the PCHOs on a 3D map.

The PCHOs are defined as obstacles that spring out from

occluded areas with which a driver cannot avoid collision.

The participants of our experiments were one skillful

(SD) and three non-skilled (NSD) drivers. The following

deductions were made from the experimental results:

• Although the driving and eye-gaze behaviors of each

driver were unique, similar PCHOs were observed in

the results of both the SD and the NSDs.

• The relationship between the collision angle and linear

velocity of the PCHOs revealed a boundary that divides

expected and unexpected obstacles for drivers.

Our future research will include a more advanced attention

analysis using an object classifier method, such as [44], and

autonomous navigation in blind corners utilizing the safety

criteria and its performance evaluation. Additionally, we plan

to model the driving and eye-gaze behaviors, such as those

presented in [45] to enable a more indepth comprehension

of the human driving style.
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Fig. 8. Results of CW driving by the NSD1, NSD2, and NSD3 from the left
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Fig. 9. Results of CCW driving by the SD, NSD1, NSD2, and NSD3 from the left.
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