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ABSTRACT

A novel method based on a probabilistic model for con-

versation scene analysis is proposed that can infer conversa-

tion structure from video sequences of face-to-face commu-

nication. Conversation structure represents the type of con-

versation such as monologue or dialogue, and can indicate

who is talking / listening to whom. This study assumes that

the gaze directions of participants provide cues for discerning

the conversation structure, and can be identified from head di-

rections. For measuring head directions, the proposed method

newly employs a visual head tracker based on Sparse-Template

Condensation. The conversation model is built on a dynamic

Bayesian network and is used to estimate the conversation

structure and gaze directions from observed head directions

and utterances. Visual tracking is conventionally thought to

be less reliable than contact sensors, but experiments confirm

that the proposed method achieves almost comparable perfor-

mance in estimating gaze directions and conversation struc-

ture to a conventional sensor-based method.

1. INTRODUCTION

Face-to-face conversation is one of the most basic forms of

communication in our life and is used for conveying / sharing

information, understanding others’ intention / emotion, and

reaching decisions. In recent years, meeting scene analysis

has emerged as an attractive way of creating innovative mul-

timedia applications for teleconferencing, archiving / summa-

rizing meetings, and social agents / robots. Several attempts

have been made to achieve the automatic recognition of group

actions in meetings using HMMs [1], layered-HMM [2], and

dynamic Bayesian networks [3, 4]. Current approaches mainly

utilize the direct modeling of physical actions to recognize in-

teraction between people, and little attention has been paid to

the underlying structure of conversations that rules human in-

teraction.

In contrast to the existing approach, we have been try-

ing to explore the underlying structure of conversations; this

structure governs how people interact within the social con-

text of conversation. As a basic conversation structure, we
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focus on the combination pattern between participants and

their participation roles such as speaker, addressees, and side-

participants [5]. This conversation structure can indicate who

is talking / listening to whom, and is an essential element in

describing conversation scenes. To extract this structure, we

focus on eye gaze, which is acknowledged to serve important

functions such as cues for addressing and listening [6], and

controlling turn-yielding/taking [7]. Based on these empiri-

cal findings, we have hypothesized that the structural features

of gaze pattern among participants can characterize the con-

versation structure, and have proposed a probabilistic conver-

sation model based on a dynamic Bayesian network that rep-

resents the hierarchical relationship between the conversation

structure and human behavior [8]. In this model, gaze di-

rections are inferred from head directions, because the direct

measurement of gaze direction is difficult. Furthermore, the

Markov chain Monte Carlo (MCMC) method [9] is used to

realize Bayesian estimation of the conversation structure and

gaze pattern from observed head directions and utterances. In

[8], head direction was accurately measured by attaching a

magnetic-based sensor to each participant, and quantitative

evaluations confirmed that the sensor-based head direction

was effective for estimating gaze direction and the conver-

sation structure. Although such sensors are accurate, they are

not practical and interfere with natural communication.

To support a broad range of applications, this paper pro-

poses a new method for conversation scene analysis that mea-

sures head direction by tracking the heads of the participants

in video sequences captured by monocular cameras, instead

of using contact-type sensors. As the head tracking method,

we employ Sparse-Template Condensation (STC) tracker [10].

The sparse template consists of a sparse set of feature points

within a rectangle region. The human face is approximated as

a planar surface forming the sparse template. Condensation

algorithm is used to estimate the posterior density of state of

the template that represents the position and direction of the

face. STC tracker provides significant robustness against par-

tial occlusions, such as those that occur in profile shots. The

measured head directions are input to the conversation model

that the authors previously proposed [8]. Experiments con-

firm that proposed method achieves reasonable performance
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in estimating both gaze direction and conversation structure.

This paper is organized as follows. Section 2 reviews the

conversation model and estimation algorithm, and Section 3

presents head tracker. Section 4 shows experiment results that

verify the performance of the proposed method. Finally, our

conclusion and discussions are presented in Section 5.

2. CONVERSATION MODEL AND ESTIMATION

This study targets small group conversations held in a closed

environment, and aims to realize the automatic identification

of the structure of multiparty conversations from human be-

havior extracted from audio and visual information by a prob-

abilistic conversation model [8]. The conversation model is

based on a dynamic Bayesian network called the Markov-

switching model [11]. The Markov-switching model exhibits

a hierarchical structure; a discrete random process at a higher

level evolves through Markovian transitions, and it governs

the dynamics of the processes at the lower levels. Here, the

high-level process corresponds to the conversation structure,

we call it the conversation regime, and the lower one corre-

sponds to participant behavior which includes gaze and utter-

ance patterns. The temporal changes in regimes are assumed

to represent the dynamics of conversation such as turn-taking.

Assuming that gaze patterns can characterize the conver-

sation structure, three classes of conversation regimes are de-

fined based on the structural features of gaze patterns; i) con-

vergence, ii) dyad-link, and iii) divergence. Regime conver-

gence RC is assumed to correspond to a monologue scene,

and is indicated by the convergence of gazes to one person

(Fig.1(a)). Regime dyad-linkRDL
is assumed to correspond

to dialogue scenes, and is indicated by mutual gaze between

two people (Fig.1(b)). Regime divergence R0 is assumed to

represent scenes that do not match the above two regimes,

i.e. people look in different directions or avert their gaze

(Fig.1(c)).

Fig. 2 shows the structure of the conversation model. Hid-

den variables include regime state sequence S1:T = {St}T
t=1

and the sequence of gaze patterns X1:T = {Xt}T
t=1. The

regime state at time step t, St, takes one ofM(= N +NC2 +
1)-regimes as St = R ∈ R = RC ∪ RDL ∪ R0, where

N denotes the number of participants. The gaze pattern Xt

is composed of the set of gaze directions of all participants,

Xt = {Xi,t}N
i=1, whereXi,t denotes the gaze state of person

i; looking at person j ifXi,t = j, (i �= j) or avert ifXi,t = i.
Observable variables Z1:T consist of the sequences of head

directionsH1:T = {Ht}T
t=1 and utterance patterns U1:T =

{U t}T
t=1. The head direction hi,t ∈ Ht of each person i is

observed as the azimuth (horizontal) angle between world co-

ordinate X and the frontal direction of face, as shown in Fig

4(a). Also, the utterance pattern U t = {ui,t}N
i=1 indicates

whether person i is making utterance (ui,t = 1), or not (ui,t =
0). Based on the model, the problem is to estimate regime
sequence S1:T (the conversation structure), gaze pattern se-

(a) (b) (c)

Fig. 1. Examples of gaze patterns including typical structures;

(a)convergence, (b)dyad-link, (c)divergence. Node: participant. Di-

rected edge : gaze direction, Node without outgoing edge : gaze

aversion.
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Fig. 2. Graph representation of proposed conversation model.

quence X1:T , and model parameters ϕ, from observed head
directions H1:T and utterances U1:T . To yield a Bayesian

solution, we use the MCMC method called Gibbs sampler; it

outputs the joint posterior distributionp(S1:T , X1:T , ϕ|Z1:T )
of all unknown variables for given measurements.

3. VISUAL HEAD TRACKING

For measuring head directions, this paper employs the Sparse-

Template Condensation (STC) tracker [10]; it is fast and ro-

bust. In contrast to traditional template matching, which as-

sesses all pixels in a rectangular region, the sparse template

consists of a sparse set of feature points within a rectangu-

lar template region. The feature points are located at the lo-

cal minimum/maximum of image intensities and straddle the

zero-cross boundaries of images. Assuming the planar ap-

proximation of the human face, this paper manually registers

a template that includes facial parts, as shown in Fig. 3(a).

The state of a template, which represents the position and

pose of the face, is defined as a vector consisting of 2-DOF

translation on the image plane, 3-DOF rotation, and scale (we

assume weak-perspective projection). The Condensation al-

gorithm is used to sequentially estimate the posterior density

of the template state, which is represented as a particle set, as

shown in Fig. 3(b). The weight of each particle is calculated

based on a robust function for projected feature points on the

image. The STC tracker has the advantages of speed owing

to the sparseness of the feature points and robustness owing

to robust matching, multiple-hypothesis generation/testing by

the Condensation approach, and multiple templates which al-

lows partial occlusions to be well handled.

The indeterminate problem of the sign of rotational angle,

which is due to the weak-perspective projection, is solved by

the following approach; i) impose a depth offset so that the
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(a) (b) (c)
Fig. 3. (a)sparse template, (b)template during tracking (white

frame); black cloud : particle distribution, larger circle : center point

of template (head center), smaller circle : center of template sur-

face. (c)extracted foreground region (gray area) and estimated head

circumference (circle).
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Fig. 4. Overview of scene. (a)location of each participant Pi and
camera Ci, (b)whole view of participants (G1) from CW .

template plane fits the surface of face and the center indicated

by the template state is located at the center of head, ii) penal-

ize a particle if the estimated head circumference overreaches

the actual head region extracted as foreground (Fig. 3(c)).

Images of each participant are recorded by separate un-

calibrated cameras, as shown in Fig. 4(a) and Fig. 6(a), and

his/her head direction is measured in terms of relative angle

away from the frontal position toward cameras, as the input of

the conversation model. Note our method does not need abso-

lute angle in the world coordinate common to all participants,

it requires only relative order in azimuth angles between par-

ticipants as observed from the participant’s position.

4. EXPERIMENTS

4.1. Data Set

Experiments used the data collected in [8], which includes 4-

person group conversations held by two groups G1 and G2;

each group consisted of four women, and held two discus-

sions on given topics, we denote them G1-C1, G1-C2, G2-

C1, and G2-C2. The videos ranged from 5.1 to 5.6 min. Fig.

4 shows the seat and camera for each participant. The hyper-

parameters of the model were also as same as those in [8].

The number of particles used in the STC tracker for each per-

son was set at 2000. Unit time step was 1/30 second. Image

size for tracking was 320×240 pixels.

4.2. Accuracy of Head Direction

Fig. 5 shows the head azimuth of each participant obtained

by STC tracker in the first 3600 time steps (=120 sec.) for

G1-C1. Fig. 5 also shows the corresponding sensor out-

put from magnetic-based sensors (POLHEMUS FastrakTM),

500 1000 1500 2000 2500 3000 3500
time step[frame]

-100

-50

0

50

100

150
[deg]

P1

P2

P3

P4

Fig. 5. Mesurement data of azimuth head direction. solid line: STC,
pale wide line: sensor data.

(a)

(c)(b) (d)

P1 P2 P3 P4

Fig. 6. Snapshot of participants during tracking. (a)all participants,
(b)profile view, (c)laughing, (d)hand-covering.

which were attached to their heads with hair bands. For com-

parison, a bias was added each STC tracker output so that it

had the same average as the sensor output. Fig. 5 indicates

that the STC data exhibit significant fluctuation, but approxi-

mately replicate the sensor output. The mean deviation in G1-

C1 was 5.1, 6.9, 10.0, and 3.7[deg], for subjects P 1 ∼ P 4,
respectively. For all data, the mean deviation was 5.9[deg].

Fig. 6 shows snapshots of the templates during tracking. Fig.

6(b) shows that self-occlusion, due to the profile view, can

successfully be handled. Also, the robustness against changes

in facial expression from the one in the registered template

is confirmed, as shown in Fig. 6(c). Although partial oc-

clusions sometimes occurred as shown in Fig. 6(d), stable

tracking continued through the use of two templates; one is

the whole region and the other is the upper-half region for

the P3 case. Despite the planar approximation of the face,

STC tracker yielded data that was reasonably accurate. The

tracking of each person was done offline without termination,

while automatic re-initializationwas invoked if the track was

lost due to full occlusions e.g. face was fully covered by both

hands when embarrassed. The processing speed was about

0.20[sec/frame].

4.3. Evaluation of Gaze Directions

Fig. 7(a) shows the estimation results of gaze direction and

the corresponding ground truth, for the same period shown

in Fig. 5. The ground truth of gaze direction was manually

created by watching the video sequences. Table 1 shows the
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Fig. 7. Estimated sequences of (a)gaze pattern {Xi,t}4
i=1 and

(b)regime states. In (a), solid lines : estimates, dashed lines : ground

truth. In (b), single band at a time slice indicates regimeRC
i (conver-

gence), dual band indicates regime RDL
(i,j) (dyad link), and no band

indicatesR0 (divergence).

average correct ratio where estimates and ground truth coin-

cide. A comparison to the results obtained with magnetic-

based sensors, [8], which is denoted as “reference” in Table

1, confirmed that the proposed methods can achieve almost

comparable accuracy.

4.4. Evaluation of Conversation Regimes

Fig. 7(b) shows a part of the estimated regime sequence for

G1-C1. Table 2 shows the accuracy of regime estimates for

each conversation. The accuracy is defined as the degree of

match between the regime estimates and annotations that rep-

resent the class and directionalityof utterances, given for each

utterance interval [8]. Table 2 indicates that the accuracy of

the proposed method is reasonably high; it almost matches

that of the magnetic-based sensor system.

5. CONCLUSION AND DISCUSSION

This paper newly incorporated a visual head-tracking method

into a probabilisticconversation model for identifying the con-

versation structure from audio-visual recordings of meetings.

Experiments confirmed that the proposed method offers rea-

sonable accuracy in estimating gaze direction and conversa-

tion structure; results show that visual-head tracking is an

effective technique for extracting the visual attention of par-

ticipants. Unlike sensor-based methods, which require spe-

cial hardware and environments, the visual approach requires

only a video camera / recorder, which are commonly avail-

able nowadays. The results from this paper show a way to

apply the proposed framework of conversation analysis to a

wide range of video-based applications such as video archiv-

ing and computer-mediated communications.

Table 1. Accuracy of gaze direction estimates [%].
G1-C1 G1-C2 G2-C1 G2-C2

Proposed 64.7 57.8 69.5 74.5

Reference 71.1 59.3 72.4 75.9

Table 2. Accuracy of regime estimates [%].
G1-C1 G1-C2 G2-C1 G2-C2

Proposed 77.7 83.1 89.2 92.7

Reference 81.9 92.1 91.4 96.3

Future works include the following. First, although the

current method needs manual registration of template, face

detection techniques such as in [12] can easily be employed to

remove this manual process. Also, this paper uses one camera

per person, but the head tracker used can be applied to the

image frames captured by just one wide-angle camera. For

practical meeting situations, it is also important to deal with

dynamic scenes including entrance / movement / departure of

people during the conversations.
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