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Abstract  The authors present a robust 3-D object recognition system for recognizing noisy images. Since a recognition 
system usually deals with objects taken from various viewpoints, their appearance will vary from one viewpoint to another. 
Generally, the appearance of an object changes along with the changes of image conditions, and so does its position in the 
eigenspace. Such changes may cause an inaccurate recognition of an object. In this paper, we propose a novel object 
recognition method where covariance matrix calculation is embedded in parameterized appearance manifold. The appearance 
manifold will capture object characteristics along the pose rotations where the covariance matrix calculation will give the 
sample distribution information. Specifically, we propose the Appearance Manifold with Constant Covariance matrix (AMCC) 
and Appearance Manifold with View-dependent Covariance matrix (AMVC) methods. Experimental results showed that our 
approach could enhance the recognition performance, as well as perform robust recognition of 3-D objects under varying 
viewpoints and translation effects.  
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1. Introduction 
Object recognition is one of the most active research 

areas in computer vision. An object recognition system is 

efficiently organized to recognize an object of interest by 

comparing an image with models that already exist in the 

database gallery. It is argued that 3-D recognition can be 

accomplished using linear combinations of as few as four 

or five 2-D viewpoint images [1][2]. Unfortunately, with 

this traditional approach, an image is represented as a 

very high dimensional feature, that may cause inefficiency 

in its application. One most attractive and popular 

approach to handle this problem is the Principal 

Component Analysis (PCA) method which transforms an 

image represented by a high dimensional feature into low 

dimensional feature representation, called the eigenspace 

representation.  

The eigenspace representation, which is a collection of 

points in the eigenspace, is very sensitive to image 

conditions – background noise, image shift, occlusion of 

objects, scaling of the image, and illumination changes [3]. 

Generally, the appearance of an object changes along with 

the changes of image conditions, and so does its 

eigen-point position. In the traditional recognition system 

whose works are based on a template matching technique, 

such changes may cause an inaccurate recognition of an 

object. Earlier works have proposed many methods to 

handle this problem, such as Murase and Nayar with 

Parametric Eigenspace (PE) [4], Ohba and Ikeuchi with 

Eigen Window [3], and Moghaddam and Pentland with 

Probabilistic Visual Learning [5].  

We put our focus on Murase and Nayar’s method 

which gave high recognition capability in recognizing 3-D 



  

objects with its parameterized manifold in eigenspace. As 

the appearance of an object varies from one viewpoint to 

another, the PE method proposed the use of a 

parameterized manifold in eigenspace to capture object’s 

changes which cover their pose and illumination direction. 

The PE method has shown high recognition capability in 

recognizing 3-D objects (see [4]). However, when the 

problem of image shifting and occlusion of objects are 

included in the system, PE method could not give a 

satisfying recognition result.  

Our objective is to develop a robust 3-D object 

recognition system for recognizing noisy images. Since a 

3-D object recognition system usually deals with objects 

taken from various viewpoints, it may also deals with the 

changes of object’s appearances. When the appearance of 

an object is changed, its position in the eigenspace also 

changes. This condition might cause an inaccurate 

recognition of an object. One promising way is to use an 

appearance manifold parameterized by the object’s pose 

and also add class-density information, such as mean 

vector and covariance matrix, to the system. The 

appearance manifold will capture object characteristics 

along the pose rotations, while the covariance matrix 

calculation will give the information of sample 

distribution.  

In this paper, we propose a novel object recognition 

method where covariance matrix calculation is embedded 

in a parameterized appearance manifold. We propose two 

methods: the Appearance Manifold with Constant 

Covariance matrix (AMCC) and the Appearance Manifold 

with View-dependent Covariance matrix (AMVC) method. 

The AMCC method uses covariance matrices with 

constant values obtained from the average value of all 

covariance matrices in the manifold. While in the AMVC 

method, the covariance matrices change as function of 

viewpoint for each manifold.  

The paper is organized as follows: we give a brief 

description of the PE method in section 2. Then, introduce 

our appearance manifold with covariance matrix methods 

(AMCC and AMVC) in section 3. Section 4 covers the 

experiments and analysis of the proposed methods. Finally, 

conclusion and future works are presented in section 5. 

 
2 . Parametric Eigenspace Representation 

In this section we will give a brief description of the 

PE representation. The PE method provides an efficient 

way to represent object appearance that is parameterized 

by its variables such as pose and illumination.  

First, an image set of an object is obtained in various 

poses. Then the image is normalized in brightness and 

scaled to achieve invariance to image magnification and 

illumination intensity. These normalized images can be 

written as a vector x by reading the number of pixels ( N ) 

in an image: 
T

Nxxx ],...,,[ 21=x        (1) 

Let M be the number of the images in a learning set. 

By subtracting the average image c of all images, we 

obtain the learning set Y : 

],...,,[ 21 ccc M −−−= xxxY          (2) 

Next, we define the covariance matrix by 
TYYQ =             (3) 

and determine the eigenvectors ie and the corresponding 

eigenvalues iλ by solving the following well-known 

eigenvector decomposition problem:  

iii Qee =λ             (4) 

For dimension reduction, simply ignore small eigenvalues 

and use only k  corresponding eigenvectors using T  

threshold value: 
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where Nk << .  

Next, use the first k eigenvectors to project )( p
lx  as 

images of object p with viewpoint l into the eigenspace:  
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Figure 1. Recognition rates of the PE method                        

in recognizing 3-D objects with translation effects. 
 

By projecting all the learning samples in image set 
)( p

lX , we get a set of discrete points in the eigenspace. 

Pose variation between any two consecutive images in 
)( p

lX  is relatively small [3]. As a result, consecutive 

images are strongly correlated and could be represented in 

a smooth manifold in the eigenspace: 

)(~ )( θp
lg             (7) 

where θ  is a continuous pose parameter.  

To recognize an input image z , project z into the 

eigenspace: 

)(],...,,[ 21 czeeeh −= T
k   (8) 

then calculate distance d  between the projected-image in 

the eigenspace h  and the manifold )(~ p
lg : 

)(~ p
ld gh −=       (9) 

Next, an input image is classified based on the minimum 

distance d. 

 
3 . Appearance Manifold with Covariance Matrix 

The PE method with its parameterized manifold, 

which covers object’s pose and illumination direction, has 

shown high recognition capability in recognizing 3-D 

objects (see [4]). However, when the problem of image 

shifting and occlusion of objects are included in the system, 

the PE method could not give a satisfying recognition 

result. Fig. 1 illustrates the recognition rate of the PE 

method in recognizing ten 3-D objects with various 

horizontal positions influenced by various translation 

effects.  

The learning images contained 32x32 pixels of an 

original-captured image and images generated with 

artificial noises, such as blur and shift, with ten degrees 

interval of horizontal viewpoints (0o, 10o, 20o, …, 350o). 

The generated images consist of 21 images with 5% until 

25% blur effects and 10 images with one until five pixels 

left shift and right shift effects. While for testing, images 

were five degrees horizontal shifted from every learning 

images (5o, 15o, 25o,…, 355o) and influenced with one, 

three, and five pixels translation effects. We created the 

appearance manifold using the cubic spline interpolation 

method and then classified a test image based on its 

minimum Euclidean distance to the mean vector.  

Fig. 1 shows that the recognition rate of the PE 

method for recognizing ten objects with various horizontal 

positions and one pixel translation effect was 86.94%. 

While for recognizing objects with three and five pixels 

translation noise effects, the recognition rate of the PE 

method was 74.72% and 59.44% respectively. These 

results proved that the PE method could not give a 

satisfying result for recognizing shifted images. 

One promising idea to solve this problem is adding 

class-density information, such as mean vector and 

covariance matrix, to the parameterized appearance 

manifold.  The appearance manifold will capture object 

characteristics along the pose rotations where the 

covariance matrix calculation will give the sample 

distribution information. 

In this paper, we propose an appearance manifold with 

covariance matrix calculation that is parameterized by 

object’s poses. Specifically, we propose the Appearance 

Manifold with Constant Covariance matrix (AMCC) and 

the Appearance Manifold with View-dependent 

Covariance matrix (AMVC) method. Fig. 2 illustrates the 

appearance manifold representation without covariance 

matrix calculation, while Fig. 3 illustrates our appearance 

manifold with covariance matrix representation. 



  

 

 
Figure 2. Appearance manifold representation. 

 
 

 
Figure 3. Appearance manifold with covariance matrix representation. 

 
 

3.1  Appearance Manifold with Constant Covariance 
Matrix (AMCC) 

In AMCC, after transforming learning images to the 
eigenspace, the mean vector )()( θµ p and the covariance 
matrix )()( θp∑  for each object p  for viewpoint θ  are 

calculated. The mean vector is typically estimated using: 

∑
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where s  is the number of learning samples from each 

class, and )()( θp
ig is the image sample i  from class 

viewpoint θ  and object p . The covariance matrix is 

typically estimated by: 
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Next, create )(~ )( θµ p as the manifold of the mean vector 

and )(
~ )( θp∑  as the manifold of the covariance matrix.  
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Figure 4. 3-D Basic shape objects. 

 
 

     
                                         

Figure 5. 3-D Basic shapes objects with 5%, 10%, 15%, 20%, and 25% blur effects. 
 
 

The manifold of )(~ )( θµ p is obtained by applying an 

interpolation method between two consecutive mean 
vectors.  While the manifold of covariance matrix 

)(
~ )( θp∑ contains the same value for every viewpoint θ  by 

applying the average covariance matrix: 

∑
=

ΣΣ =
w

i

p
i

p
w

1

)()( )(1 θ    (12) 

with w  the number of viewpoint class for each object. 

Since we have the parameter of mean vector and 
covariance matrix in the appearance manifold, the 
sufficient distance to use in this calculation is the 
Mahalanobis distance. We use the Regularized 
Mahalanobis distance [6] measurement to classify an 
object z : 

)]())([()( )(~)(
~

1)(~)( )(1)()()( θµλεθλθµ ppTpp zIIzzd −++∑−−= −   
(13) 

where λ and ε are learning parameters. Parameter λ  is 

in the interval [0,1] and it controls the tradeoff between 
Mahalanobis and Euclidean distances. If 0=λ  then the 

Regularized Mahalanobis distance is the Mahalanobis 
distance, while if 1=λ then it becomes the Euclidean 
distance. The next parameter ε is used to stabilize the 

learning process by converting a singular matrix to a 
non-singular one. 

3.2 Appearance Manifold with View-Dependent 
Covariance Matrix (AMVC) 

In AMVC, after transforming learning images for each 
viewpoint θ to the eigenspace, the )()( θµ p mean vector 
and the covariance matrix )()( θp∑  for every 

viewpoint-class for each object are calculated. Next, a 
continuous curve which is parameterized by viewpoint 
rotation (θ) is developed using an interpolation method. 
Thus, we have the manifold )(~ )( θµ p of mean vector with 

)(
~ )( θp∑  covariance matrix as a function of the viewpoint θ. 

Finally, we use the Regularized Mahalanobis distance to 
classify an object z.  

 

4 . Experimental Results and Analysis 
To demonstrate the performance of our method, we 

conducted experiments to recognize ten objects with 
various 3-D basic shapes. Fig. 4 illustrates the object set 
used in the experiment.  

The size of the learning image was 32x32 pixels. The 
degree interval was 10 degrees of horizontal positions (0o, 
10o, 20o, …, 350o). For each object in the learning stage, we 
trained the system with original-captured images and 
generated images with artificial noises, such as blur and 
translation effects. The generated images consist of 21 



  

images with 5% until 25% blur effects and 10 images with 
one until five pixels left shift and right shift effects. Fig. 5 
illustrates the example of learning images with 5%, 10%, 
15%, 20%, and 25% blur effects. Next, a cubic spline 
interpolation method is used to form the appearance 
manifold.  

The testing images were five degrees horizontal shifted 
from every learning images (5o, 15o, 25o,…, 355o) and 
influenced with one, three, and five pixels of translation 
effects. The PE method classified the test images based on 
its minimum Euclidean distance to the mean vector. 
However, for AMCC and AMVC, the minimum 
Regularized Mahalanobis distance with 1.0=λ  and 

01.0=ε  was used for classifying the testing images.  

Experiments were conducted to compare the 
classification accuracy from the PE, AMCC and AMVC 
methods. In our experiments, the covariance matrices of 
the PE method were equal to the identity matrix, but each 
class had a different mean vector. In AMCC, we use the 
identical covariance matrix for every class, based on the 
average covariance matrix. While in AMVC, the 
covariance matrices changed for each class based on the 
function of viewpoints.  

Fig. 6 shows the recognition results of the PE, AMCC, 
and AMVC methods. Based on Fig. 6, our proposed AMVC 
method gave the best recognition rates compared with the 
AMCC and PE methods. Also, the AMVC method showed 
its robustness to the presence and the increment of the 
translation effects in the 3-D recognition system.  
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Figure 6. Recognition rates for 3-D objects with translation effects. 

 

For images with one pixel translation effect, the 
recognition rate for the PE method was 86.94%, the 
recognition rate for the AMCC method was 86.11%, while 
our proposed AMVC method could give the highest 
recognition rate 89.17%. However, along with the 
increasing number of translated pixels, the recognition 
rates of all methods decreased. For images with 5 pixels 
translation effect, the recognition rate for the PE method 
was 59.44% and 67.50% for the AMCC method. While, our 
proposed AMVC method could maintain its recognition 
rates up to 88.89%, the highest recognition rates 
compared to the other two methods.  

 

5 . Conclusion and Future Works 
 In this paper, we presented a novel method to 

recognize 3-D objects with noisy images. Recognition 
experiments showed that our proposed AMVC method, 
with its view-dependent covariance matrix, could enhance 
the recognition performance, as well as perform a robust 
recognition of 3-D objects under varying viewpoints and 
translation effects.  

Future works include recognizing 3-D objects 
influenced with other type of noises, developing the 
recognition system using less learning image samples by 
changing the interval of viewpoint orientations and 
solving the segmentation problem in order to enhance the 
performance of the recognition system. 

 
Reference 

 
[1] S. Ullmann and R. Basri, “Recognition of Linear 

Combination of Models”, IEEE Trans. PAMI, Vol.13, 
No.10, pp.992-1007, 1991. 

[2]  T. Poggio and S. Edelman, “A Network that Learns to 
Recognize Three Dimensional Objects”, Nature, 
Vol.343, No.6255, pp.263-266, 1990. 

[3]  K. Ohba and K. Ikeuchi, “Detectability, Uniqueness, 
and Reliability of Eigen Windows for Stable 
Verification of Partially Occluded Objects”, IEEE 
Trans. PAMI, Vol.19, No.9, pp.1043-1048, 1997. 

[4]  H. Murase and S.K. Nayar, “Illumination Planning 
for Object Recognition Using Parametric 
Eigenspaces”, IEEE Trans. PAMI, Vol.16, No.12, 
pp.1219-1227, 1994. 

[5]  B. Moghaddam and A. Pentland, “Probabilistic Visual 
Learning for Object Representation”, IEEE Trans. 
PAMI, Vol.19, No.7, pp.696-710, 1997. 

[6] J. Mao and A.K. Jain, “A Self-organizing Network for 
Hyperellipsoidal Clustering (HEC)”, IEEE Trans. NN, 
Vol.7, No.1, pp.16-29, 1996. 


