
 

 
 

 

 

 

Active Learning for Human Pose Estimation  

based on Temporal Pose Continuity 
 

Taro Mori*a, Daisuke Deguchia, Yasutomo Kawanishib,a 

Ichiro Idea, Hiroshi Murasea, Tetsuo Inoshitac 
a Graduate School of Informatics, Nagoya University, Nagoya, Japan 

b RIKEN Information R&D and Strategy Headquarters, GRP, Kyoto, Japan  
c NEC Corporation, Biometrics Research Laboratories, Kawasaki, Japan 

ABSTRACT   

In recent years, human pose estimation based on deep learning has been actively studied for various applications. A large 

amount of training data is required to achieve good performance, but, annotating human poses is quite an expensive task. 

Therefore, there is a growing need to improve the efficiency of training data preparation. In this paper, we take an active 

learning approach to reduce the cost of preparing training data for human pose estimation. We propose an active learning 

method that automatically selects images effective for improving the performance of a human pose estimation model from 

unlabeled image sequences, focusing on the fact that the human pose continuously changes between adjacent frames in an 

image sequence. Specifically, by comparing the estimated human poses between frames, we select images incorrectly 

estimated as candidates for manual annotation. Then, the human pose estimation model is re-trained by adding a small 

portion of manually annotated data as training data. Through experiments, we confirm that the proposed method can 

effectively select training data candidates from unlabeled image sequences, and that the proposed method can improve the 

performance of the model with reducing the cost of manual annotations.  
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1. INTRODUCTION  

In recent years, human pose estimation methods based on deep learning1, 2, 3 have been widely studied, and their 

applications are being considered in various forms due to their high performance. As a typical application, action 

recognition based on human pose has been actively studied4, 5. Most of these applications require accurate pose estimation 

but a large amount of training data annotated with human poses should be prepared to construct high-performance deep 

learning-based pose estimation models. Since the training data requires accurate multiple joint positions, this annotation 

task is very time consuming. Thus, there is a strong demand for efficient training data preparation techniques.  

Active learning is one of the most efficient approaches to reduce the cost of preparing training data6, 7. The approach 

expands the training data by automatically selecting and annotating images from a set of unlabeled images. Since the 

images are selected so that they can contribute to the performance improvement of a given model, it would be possible to 

build an accurate model with a lower cost. 

B. Liu et al.7 proposed an active learning method that automatically selects images in which the estimated human poses 

are uncertain, and annotates only those images to improve the accuracy with low annotation cost. The method uses not 

only the estimated human pose, but also the heat map estimated in the previous step of the estimation to evaluate the 

uncertainty.  Specifically, the method focuses on the heat map of each human joint and determines uncertainty when there 

are multiple maxima in the heat map of each joint, i.e., when there are multiple candidates for that joint. Since this requires 

to estimate the heat map of human joints individually, this method can only be applied to a top-down method3 that estimates 

the heat map of an individual human joint based on pedestrian detection technique. Therefore, it cannot be applied to a 

bottom-up method1, 2 which estimates the heat map of all human joints simultaneously. From this point of view, in this 

paper, we propose an active learning method that can be applied to bottom-up human pose estimation methods; The 

proposed method automatically selects images from unlabeled image sequences that can contribute to the performance 

improvement if annotated. 
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(a) 𝑡 − 1 frame        (b) 𝑡 frame        (c) 𝑡 + 1 frame        (𝑑) 𝑡 − 1 frame     (e) 𝑡 frame       (f) 𝑡 + 1 frame 

Figure 1. (a)-(c) Examples of correctly estimated human poses in successive frames. The poses change smoothly between frames. 

(d)-(f) Examples of incorrectly estimated human poses. The left elbow and the wrist of the person in frame 𝑡 (e) are incorrectly 

estimated, and their positions are significantly different from those of adjacent frames.  

 

  
Figure 2. Process flow of the proposed method. 

2. ACTIVE LEARNING USING IMAGE SEQUENCES  

2.1 Overview of the proposed method  

A careful observation of an image sequence that captures a walking pedestrian shows that the position of each human joint 

moves smoothly and continuously between adjacent frames. As shown in Figure 1, if the model can correctly estimate the 

human pose in a frame, the difference of the estimated human poses should be small between adjacent frames ((a)-(c)). On 

the contrary, if an estimated human pose has errors, the difference would be large ((d)-(f)). Furthermore, we notice a falsely 

undetected joint if the model detects the joint in both the previous and the next frames but not in the current frame. Based 

on these findings, we judge that a human pose in a frame is likely to be mis-estimated, if the estimated poses in the adjacent 

frames differ significantly with each other, or if the presence/absence of the estimated joints differs between the adjacent 

frames.  The proposed method selects such images as annotation candidates for active learning.  

The process flow of the proposed method is shown in Figure 2. The proposed method consists of five steps: (1) Initial 

training of a human pose estimation model using an existing labeled image dataset, (2) Estimation of human poses from 

unlabeled image sequences using the trained model, (3) Automatic selection of annotation candidates based on the 

estimation results, (4) Manual annotation of a portion of the candidates, and (5) Retraining of the human pose estimation 

model using existing labeled images and additional annotated images. In the following sections, steps (1) and (2) are 

explained in Section 2.2, a detailed explanation of step (3) is given in Section 2.3, and that of steps (4) and (5) are given 

in Section 0. 

2.2 Human pose estimation from unlabeled image sequences 

First, we construct an initial human pose estimation model by using an existing labeled image dataset. Next, we estimate 

human poses for unlabeled image sequences, using the constructed initial human pose estimation model. After that, we 

track the estimated poses between frames of the image sequences to obtain the time-series of individual human joints. We 

use PoseFlow8, a human pose tracking method, to track the human poses. 

2.3 Automatic selection of potentially mis-estimated images from unlabeled image sequences 

In this step, the proposed method automatically selects images from the unlabeled image sequences that may have 

incorrectly estimated human joints. Then, those images are selected as candidates for manual annotation. Specifically, the 



 

 
 

 

 

 

proposed method calculates the likelihood of how much the model incorrectly estimates the human pose. Then, a portion 

of the candidates to be manually annotated are automatically selected in descending order of their likelihood. 

For simplicity, we consider a single unlabeled image sequence. Here, 𝑡 ∈ {1, … , 𝑇} is a frame ID in an image sequence, 

𝑝 ∈ {1, … , 𝑃} is a person ID and the coordinates of joint 𝑗 ∈ {1, … , 𝐽} is described as 𝑦𝑝,𝑗
𝑡 = (𝑢𝑝,𝑗

𝑡 , 𝑣𝑝,𝑗
𝑡 ). 𝑒𝑝,𝑗

𝑡 ∈ {0,1} 

indicates whether the joint is detected or not. If 𝑒𝑝,𝑗
𝑡 = 0, the proposed method considers 𝑦𝑝,𝑗

𝑡 = (0,0). 𝔻𝑝
𝑡 = {𝑗|𝑒𝑝,𝑗

𝑡 = 1} 

represents the set of estimated joints of person 𝑝 at frame 𝑡. 

First, from the estimated human pose, the proposed method obtains size 𝑆𝑝 of each person in the unlabeled image sequences. 

Since the presence or absence of estimated human joints varies between frames, 𝑆𝑝 is defined based on the area of the 

rectangle surrounding the largest pose in the image sequence, and is calculated as 

𝑆𝑝 = max
𝑡

{(max
𝑗∈𝔻𝑝

𝑡
(𝑢𝑝,𝑗

𝑡 ) − min
𝑗∈𝔻𝑝

𝑡
(𝑢𝑝,𝑗

𝑡 )) (max
𝑗∈𝔻𝑝

𝑡
(𝑣𝑝,𝑗

𝑡 ) − min
𝑗∈𝔻𝑝

𝑡
(𝑣𝑝,𝑗

𝑡 ))} . (1) 

Next, the proposed method calculates the likelihood of how much the model incorrectly estimates the human pose using 

the estimated poses at frames  𝑡 –  1, 𝑡, 𝑡 +  1. Likelihood 𝐶𝑡 is obtained by the following steps: 

First, likelihood 𝐶𝐿
𝑡 is calculated based on the differences of the estimated joint positions. If the joint positions at frame 𝑡 

is incorrectly estimated, its position will differ significantly from those of frames 𝑡 −  1 and  𝑡 +  1. Based on this idea, 

we obtain 𝐶𝐿
𝑡 based on the difference in joint positions. Specifically, by using the threshold 𝜃 that is adjusted based on the 

size of the person, we count the number of incorrectly estimated joints 𝐿𝑝
𝑡−1,𝑡

 whose Euclidean distance between frames 

𝑡 −  1 and 𝑡 is greater than the threshold. 

𝐿𝑝
𝑡−1,𝑡 = ∑ 𝑒𝑝,𝑗

𝑡−1𝑒𝑝,𝑗
𝑡

𝑗

𝟏[𝑦𝑝,𝑗
𝑡−1, 𝑦𝑝,𝑗

𝑡 ] , (2) 

where 𝟏[𝑦𝑝,𝑗
𝑡−1, 𝑦𝑝,𝑗

𝑡 ] is given by 

𝟏[𝑦𝑝,𝑗
𝑡−1, 𝑦𝑝,𝑗

𝑡 ] = {
1     ‖𝑦𝑝,𝑗

𝑡−1 − 𝑦𝑝,𝑗
𝑡 ‖ > 𝜃

 0     otherwise
, (3) 

and 𝜃 is adjusted as 

𝜃 = 𝛼√𝑆𝑝  , (4) 

where 𝛼 is a hyperparameter, and 𝛼 = 0.01 is used in the experiments. 𝐶𝐿
𝑡 is calculated by summing 𝐿𝑝

𝑡−1,𝑡  and 𝐿𝑝
𝑡,𝑡+1

 as 

𝐶𝐿
𝑡 = ∑(𝐿𝑝

𝑡−1,𝑡 + 𝐿𝑝
𝑡,𝑡+1)

𝑝

. (5) 

Next, Likelihood 𝐶𝑈
𝑡  is calculated based on whether a joint is detected or not. When we focus on a certain joint of a person, 

the joint at frame 𝑡 can be assumed as undetected, if the joint estimated at frames 𝑡 −  1 and 𝑡 +  1 is not estimated at 

frame 𝑡. Based on this idea, 𝐶𝐿
𝑡 is obtained as 

𝐶𝑈
𝑡 = ∑ 𝑒𝑝,𝑗

𝑡−1

𝑝,𝑗

𝑒𝑝,𝑗
𝑡+1(1 − 𝑒𝑝,𝑗

𝑡 ) . (6) 

Finally, Likelihood 𝐶𝑡 is calculated by summing the likelihoods 𝐶𝐿
𝑡 corresponding to the difference of joint positions and 

𝐶𝑈
𝑡  corresponding to undetected joints as 

𝐶𝑡 = 𝐶𝐿
𝑡 + 𝐶𝑈

𝑡  . (7) 

This step is applied to all unlabeled image sequences frame-by-frame. 

2.4 Re-training of the human pose estimation model 

We automatically select candidates to be annotated from unlabeled image sequences and manually annotate them. 



 

 
 

 

 

 

Table 1. Breakdown of the dataset 

Training set Test set 

Labeled Unlabeled Labeled 

56,599 3,188 1,971 

Specifically, we use the unlabeled image sequences as input and sort them in descending order by the likelihood 𝐶𝑡 

calculated in Section 2.3 and select a portion of the candidates by descending order of likelihood for annotation. Then, the 

human pose estimation model is retrained using the newly annotated images and the existing training data. 

 

3. EVALUATION 

We conducted experiments to evaluate the effectiveness of the proposed method using publicly available datasets. Section 

3.1 describes in detail the used datasets, Section 3.2 describes the experimental methods, and Section 3.3 describes the 

results. 

3.1 Datasets 

In the experiments, we used Microsoft COCO dataset9 and PedX dataset10. The former was used for training the initial 

human pose estimation model, while the latter was used for extracting annotation candidates by the proposed method, and 

used for retraining the human pose estimation model. Table 1 shows the details of these two datasets. We extracted 56,599 

images from the Microsoft COCO training set, and used as labeled images in the initial training step. PedX dataset contains 

labeled and unlabeled images, but we used only the labeled images for the evaluation. In the experiment, we divided the 

labeled images of the PedX dataset into two groups: (i) 3,188 images and (ii) 1,971 images. Here, (i) is used as unlabeled 

image sequences for re-training of the model, and (ii) is used for evaluation. Here, we split the PedX dataset so that neither 

the same image nor the same person is included in the training and evaluation datasets. Although the training dataset 

constructed from the PedX dataset has pose annotations, these images are used as unlabeled image sequences and the 

annotations are used instead of manual annotations in the retraining step of the proposed method. In this experiment, we 

used the following 12 joints: left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right hip, 

left knee, right knee, left ankle, and right ankle. 

3.2 Experimental methods 

First, we constructed an initial human pose estimation model trained by labeled images from the Microsoft COCO dataset. 

Then, this was used to estimate the human pose from the unlabeled image sequences, and we tracked the estimated poses 

in the image sequence to obtain the time-series of individual estimated poses. If the sum of the pose distances from the 

previous and the next frames was greater than a threshold 𝜃, the estimated pose is not taken into account in the calculation 

of likelihood 𝐶𝑡 to reduce the effect of tracking failure. Then, the likelihood was calculated for each unlabeled image 

sequence following the steps explained in Section 2.3. Next, we automatically selected the candidates for annotation from 

the unlabeled image sequences by referring to likelihood 𝐶𝑡, and annotated them. For images with equal likelihood, we 

randomly selected the candidates. In this experiment, instead of manually annotating the images, we used the human pose 

annotations from the PedX dataset. Finally, we re-trained the human pose estimation model using the training data with 

newly annotated images, and evaluated its performance using the evaluation data. 

We used OpenPifPaf2 that is a bottom-up human pose estimation method, and compared the following two methods whose 

image selection mechanisms are different. 

Random selection method  

Randomly selects candidates from unlabeled image sequences and annotates them as training data. The uniform 

distribution is used for random selection process. 

Proposed method  

Automatically selects candidates from unlabeled image sequences in descending order of likelihood and annotates 

them as training data. 

Average Precision (AP) was used as the evaluation metric, and the average of three experiments was calculated for 

evaluation. Object Keypoint Similarity (OKS)9 was used to determine the correctness of the estimated pose for calculating 

the AP. OKS is an index that determines the correctness of the estimation based on the distance between the estimated and 

ground truths of the joints, the size of the person, and the weights determined for each joint. 



 

 
 

 

 

 

Table 2. Changes of Average Precision (AP) [%] by annotating and adding unlabeled images. 

Method 10% added 20% added 30% added 

Random selection 48.1 52.3 52.2 

Proposed 49.0 52.6 53.2 

 

 

(a) Initial model                (b) Random selection (10% added)    (c) Proposed (10% added)                 (d) Ground Truth 

Figure 3. Example of human pose estimation results. 

 
Figure 4. Percentage of AP increases for each method. 

 

3.3 Results 

Table 2 shows APs of each method when adding 10%, 20%, and 30% annotated images out of the candidates selected 

from unlabeled image sequences, and examples of estimated human poses are shown in Figure 3. The AP of the initial 

human pose estimation model was 45.9 (equivalent to 0% added), and the AP improved to 54.9 when adding all images 

(equivalent to 100% added). Figure 4 shows the increase of AP as a ratio to this 9.0 improvement in AP.  



 

 
 

 

 

 

In the upper part of Figure 3, the right knee and the ankle were estimated as the joints of different persons by the random 

selection method, while they were correctly estimated as the joints of the same person by the proposed method. In the 

bottom row, we can see that the proposed method can estimate more joints than the random selection method. From Table 

2, we confirmed that the proposed method could improve the AP by considering the difference of the estimated joint 

positions between adjacent frames and the presence of the joints. This could be confirmed in all cases when 10%, 20%, 

and 30% of candidates were added in comparison with the random selection method. In particular, the highest improvement 

compared to the random selection method was observed when 30% of candidates were added, and the AP increased by 

1.0. 

From Figure 4, compared to the improvement of AP increase when all 3,188 unlabeled image sequences were annotated 

and added to the training data, the proposed method increased the AP by 34.4% when 319 (10%) images were added, by 

74.4% when 638 (20%) images were added, and by 81.1% when 956 (30%) images were added. This indicates that the 

proposed method can efficiently improve the performance by adding a small number of training data. 

 

4. CONCLUSION 

In this paper, we proposed an active learning method that automatically selects candidates to be annotated manually for 

improving a human pose estimation method. The proposed method automatically selects images from unlabeled image 

sequences containing incorrectly estimated poses as additional annotation candidates based on the difference in joint 

positions of the estimated poses and the difference in the detected joints between adjacent frames. The experimental results 

showed that the proposed method is more efficient than a random selection method. Future work will include the 

development of a method that takes into account the differences in the intensity of human movement in an image sequence. 
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