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Abstract 

We propose use of an appearance manifold with 
embedded covariance matrix as a technique for 
recognizing 3D objects from images that are influenced by 
geometric and quality-degraded effects. Our strategy 
covers the construction of this appearance manifold by 
giving consideration to pose changes. In the proposed 
method, the correspondence of each learning pose is not 
based on the eigenpoint but directly from the covariance 
matrix. Thus, we eliminate the dependency on 
eigenpoint-to-eigenpoint correspondence, which is the 
main cause of misclassification due to the phenomenon of 
the eigenpoint’s shifting position. Experimental results 
show that our approach achieves higher recognition 
accuracies than using a simple appearance manifold. 
Consequently, it can provide a more efficient way of 
developing a robust 3D object recognition system. 

1.  Introduction 

Visual learning of 3D objects has been one of the most 
challenging problems in vision systems. 3D objects are 
visually complex and highly dependent on environmental 
conditions. Therefore, it is necessary to figure an object in 
such a way that can fully represent the characteristics of the 
object. In general, capturing the characteristics of a 3D 
object can be done by using several combinations of 2D 
images or by constructing a high-cost 3D shape model. 
Here, we focus on an appearance-based approach that uses 
combinations of images to capture the appearance 
variability of a 3D object.  

Over the past decade, there has been a growing trend to 
use appearance-based approaches for 3D object 
recognition. Appearance-based approaches often start with 
the concept of Principal Component Analysis (PCA). This 
concept enables a method to efficiently present a series of 
sample images in a low-dimensional feature description, 
called the eigenspace. For years, the eigenspace has 
provided an efficient and easy way to solve many 
recognition problems. Some of the earlier works in this 
domain include the eigenpictures of Kirby and Sirovich [1] 
for characterizing the human face, the eigenfaces of Turk 
and Pentland [2], Moghaddam’s [3] proposal of 
probabilistic PCA, and the Parametric Eigenspace of 
Murase and Nayar [4].  

Just as the appearance of an object highly depends on the 
image conditions, the image’s position in eigenspace relies 
on the object’s appearance. For handling changes caused 
by pose and illumination variability, Murase and Nayar’s 
Parametric Eigenspace method could give more 
satisfactory results than the traditional eigenspace method. 
Unfortunately, this method tends to fail when there are 
significant variations in scale, orientation, noise and 
degradation in the input image. This failure is mainly 
caused by the eigenpoint’s shifting position in the input 
image, which is influenced by various degradation effects, 
from the learning images.  

To overcome this limitation, we propose the 
construction of an appearance manifold with embedded 
covariance matrix. The basic idea is to eliminate the 
eigenpoint-to-eigenpoint correspondences of each learning 
pose class and then to construct the correspondences from 
the covariance matrices directly. By using this model, the 
appearance manifold helps the system to analyze image 
conditions such as pose changes, while the embedded 
view-dependent covariance matrix defines the scope of an 
eigenpoint’s shifting positions in eigenspace.  

Our paper is organized as follows: we describe the 
process of constructing the appearance manifold with an 
embedded covariance matrix in Section 2. Next, Section 3 
covers the development of a 3D object recognition system. 
Finally, our conclusions are presented in Section 4. 

2.  Appearance Manifold with Embedded          
Covariance Matrix in Eigenspace 

This section describes the detailed process of 
constructing the appearance manifold with an embedded 
covariance matrix, which consists of the development of 
the eigenspace using PCA, the construction of various 
techniques of appearance manifold in eigenspace, and the 
recognition of input images using the Mahalanobis 
distance measurement.  

2.1.  Eigenspace representation 
Appearance-based approaches usually deal with a set of 

learning images in various poses. These images are 
represented in a very-high-dimensional space, and thus 
they cannot be applied directly due to efficiency reasons. 
Here, PCA provides a technique to efficiently represent a 
collection of images by reducing their dimensionality.
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Figure 1. Construction models of appearance manifold (a) Parametric Eigenspace (PE), (b) points interpolation (AMPI),                       
(c) constant covariance matrix (AMCC), (d) view-dependent covariance matrix (AMVC). 

 
 
 
 Generally, the captured images should be normalized in 

brightness and scaled in order to be invariant to image 
magnification and illumination intensity. These normalized 
images can be written as a vector x by reading the number 
of pixels ( N ) in an image: 

T
Nxxx ],...,,[ 21=x  .                             (1) 

Let M  be the number of images in a learning set. By 
subtracting the average image c of all images, the learning 
set Y  will be obtained: 

],...,,[ 21 ccc M −−−= xxxY  .                      (2) 
Next, define the auto-correlation matrix by 

TYYQ =                                    (3) 
and determine the eigenvalues iλ  with their corresponding 
eigenvectors ie  by solving the following eigenvector 
decomposition problem:  

iii Qeeλ =  .                                  (4) 
To reduce the dimension, simply ignore small eigenvalues 
and use only k corresponding eigenvectors by using a T  
threshold value: 
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where Nk << .  
The first k  eigenvectors will be used to project S 
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By projecting all of the learning samples into the 

eigenspace, learning features are represented efficiently as 
a set of discrete points in a low-dimensional space. 

2.2. Construction of Appearance Manifold with 
Embedded Covariance Matrix 

In this section, we present various techniques to 
construct the appearance manifold. Figure 1 shows the four 
types of construction models for the appearance manifold: 

the simple manifold used in the Parametric Eigenspace 
(PE) method, the appearance manifold using the point 
interpolation (AMPI) method, the appearance manifold 
with constant covariance matrix (AMCC) method, and the 
appearance manifold with view-dependent covariance 
matrix (AMVC) method.  

Although each method uses a different type of 
construction technique for the appearance manifold, in 
general they use the same basic steps. First, after 
transforming learning images to the eigenspace, calculate 
the mean vector )()(

h
p θµ  and the covariance matrix 

)()(
h

p θΣ  for each object p  for horizontal viewpoint hθ . 
The mean vector is typically estimated using  
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where s  is the number of learning samples from each class, 
and )()(

h
p

s θg  is the image sample s from class viewpoint 

hθ  and object p . On the other hand, the covariance matrix 
is typically estimated by 
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Next, create )(~ )( θpµ  as a continuous manifold of the 
mean vector and )()(~

θpΣ  for the covariance matrix. The 
processes of creating manifolds )(~ )( θpµ  and )()(~

θpΣ  might 
be different from one method to another.  

The PE method uses a simple manifold obtained from 
the interpolation of the mean vector of the eigenpoints in 
two consecutive poses. However, for the covariance 
matrices, the PE method simply applies the values of the 
identity matrix. The construction model of the appearance 
manifold in the PE method is depicted in Fig. 1(a).   

Next, Fig. 1(b) shows the appearance manifold with the 
point interpolation (AMPI) method. It obtains the 
appearance manifold by interpolating every eigenpoint in 
each pose class to other eigenpoints in the consecutive pose 
classes that have similar characteristics, such as 
degradation effects. After creating those manifolds for each 
eigenpoint, generate the new eigenpoints for every 
in-between class pose, and then calculate their mean 
vectors and covariance matrices for every pose class. 
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Figure 2. Scheme of AMVC method for 3D object recognition. 
 
 

Figure 1(c) shows the tube appearance manifold with a 
constant covariance matrix (AMCC). After calculating the 
mean vectors and covariance matrix values for each 
learning pose in (7) and (8), apply an interpolation method 
for the mean vector of two consecutive learning poses to 
obtain the manifold of mean vector )(~ )( θpµ . On the other 
hand, the manifold of covariance matrix )()(~

θpΣ contains 
the same value for every viewpoint hθ  by applying the 
average covariance matrix 
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with H number of viewpoint classes for each object. 
Next, Fig. 1(d) shows another type of appearance 

manifold method, called the appearance manifold with 
view-dependent covariance matrix (AMVC). This method 
uses the appearance manifold embedded with 
view-dependent covariance matrix that changes along with 
the function of viewpoints. The manifold )(~ )( θpµ  could be 
obtained by applying an interpolation method between two 
consecutive mean vectors )()(

h
p θµ  and )( 1

)(
+h

p θµ . Then, 

the manifold )()(~
θpΣ could be obtained by interpolating the 

covariance matrices )()(
h

p θΣ  and )( 1
)(

+Σ h
p θ , respectively. 

Here, since we use only the horizontal pose parameter hθ , 
the surface of the appearance manifold in the AMVC 
method will be a tube. Figure 2 shows the scheme of the 
AMVC method with its tube surface.   

 
Figure 3. Sample images of 3D objects with various 
translation, rotation, and motion blur effects. 

2.3. Classification using distance measurement 
In order to recognize an input image u , first project it 

into the eigenspace 
)(],...,,[ 21 cueeez −= T

k                   (10) 
and then calculate distance d  between the projected-image 
in the eigenspace z  and the manifold.  

Since we have the parameter of mean vector and 
covariance matrix in the appearance manifold, the 
sufficient distance measurement to classify the input image 
is the Mahalanobis distance, defined in this formula:  

)()~()( )(~)()(~min)( )(1)()()( θθθθ
ppTppd µzµzz −−= −Σ  .  (11) 

The Mahalanobis metric provides a sufficient way to 
classify images based on their related characteristics and 
likelihood in each pose class. 

3. Application in 3D Object Recognition 

To evaluate the performance of our proposed methods, 
explained in section 2.2, we developed an application in 3D 
object recognition. The developed system was used to 
recognize seven objects with various horizontal pose 
positions and influenced by geometric and 
quality-degradation effects, such as translation, rotation, 
and motion blur. Samples of 3D objects with various 
translation, rotation, and motion blur effects are shown in 
Fig. 3. 

In the learning stage, the images were first normalized 
into 32 x 32-pixel grayscale images. Then, the system was 
learned with a total of 6,552 images. Each object consists 
of 36 poses with 10-degree intervals of horizontal positions 
(0o, 10o, 20o…350o), and each pose consists of 26 learning 
images with an original camera-captured image and 25 
generated images with various degradation effects. Those 
generated images were obtained by composing artificial 
noises with the MATLAB program, such as left and right 
translations (3, 6, 9, 12, 15 pixels), clockwise and 
counter-clockwise rotations (5o, 10o, 15o, 20o, 25o), and 
motion blur (5%, 10%, 15%, 20%, 25%).  
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Figure 4. Recognition accuracies of images with left 
(L) and right (R) translation effects. 
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Figure 5. Recognition accuracies of images with 
clockwise (C) and counter-clockwise (CC) rotation 
effects. 
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Figure 6. Recognition accuracies of images with 
motion blur effects. 

Next, those images were projected into the eigenspace, 
and the appearance manifolds were created based on each 
construction method, as explained in section 2.2. We used 
spline interpolation technique to interpolate the mean 
vectors and linear interpolation technique to interpolate the 
covariance matrices. 

Finally, we tested the system with input images that were 
different from the learning images (5o, 15o, 25o…355o) in 
horizontal poses and influenced by various types of 
degradation effects. For classification, we applied the 
Mahalanobis distance, as explained in section 2.3.  

Figures 4, 5, and 6 show a series of the recognition 
accuracies of four methods in recognizing images 
influenced with translation effects, rotation effects, and 
motion blur effects, respectively. All figures indicate that 
the AMPI method and AMVC method, with their 
view-dependent covariance matrices, always achieved 
higher recognition accuracies than the PE method or 
AMCC method. For recognizing non-degraded images, the 
AMPI method achieved 94.05%, while the AMVC method 
achieved 93.65% recognition accuracy. When recognizing 
images with 3 pixels of right translation effects, the AMPI 
method achieved 90.08%, while the AMVC method 
achieved 91.67%. Furthermore, the AMPI method 
achieved 89.68% while the AMVC method achieved 
90.08% when recognizing images with 10-degree 
counter-clockwise rotation effects.  

4. Conclusion and Future Works 

In this paper, we presented the use of an appearance 
manifold with an embedded covariance matrix as a 
technique to recognize 3D objects from images that are 
influenced by geometric and quality-degraded effects. Our 
proposed appearance manifold with view-dependent 
covariance matrix method could outperform the accuracy 
of the simple appearance manifold method. Moreover, 
performing direct covariance matrix interpolation for 
approximation in the AMVC method by some means 
worked effectively and efficiently for a relatively small 
interval of learning pose.  

Our future works include recognizing 3D objects from 
images that are influenced by other types of degradation 
effects, as well as developing a recognition system that 
uses fewer learning image samples by implementing a 
larger interval of viewpoint orientations. 
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