
GENRE-ADAPTIVE NEAR-DUPLICATE VIDEO SEGMENT DETECTION

Ichiro IDE∗, Kazuhiro Noda†, Tomokazu Takahashi‡, Hiroshi Murase

Nagoya University, Graduate School of Information Science
Furo-cho, Chikusa-ku, Nagoya, 464–8603, Japan

ide@is.nagoya-u.ac.jp

ABSTRACT

This paper proposes a fast and accurate method to detect all near-
duplicate segments in a video stream. To reduce the computation
time while ensuring the detection accuracy equivalent to that by
brute-force frame-by-frame comparison, a two-step detection method
is proposed; a fast but rough detection applied in a compressed fea-
ture vector space spanned by the result of a PCA, followed by con-
firmation of candidates in the original high dimension space. The
results show that the proposed method accelerates the detection by
more than 1,000 times while maintaining the detection accuracy.
We also propose an entropy-based pixel selection scheme to gen-
erate feature vectors optimized for comparison of video segments
within programs with mostly common pictures. The results show
that the proposed scheme eliminates the false positives drastically,
which should lead to even faster detection.

1. INTRODUCTION

Recent advance in storage technologies has provided us with the
ability to archive many hours of video streams accessible as online
data. We have been working on detecting every single pair of near-
duplicate segments from a long broadcast video stream in realistic
computation time.

Near-duplicate video segments are mostly identical video seg-
ments from the image perspective, except for minor local differences
such as overlay of captions or logos, or minor overall color differ-
ence. Detecting near-duplicates is different with the traditional sim-
ilar video segment detection which detects not only mostly identical
but also somewhat similar, but originally different video segments.
Detection of near-duplicates is very important to understand seman-
tic structures in video streams by detecting the repetitions.

Detecting all pairs of near-duplicates in a video stream is, how-
ever, extremely time-consuming compared to detecting those of a
given segment, since it essentially requires computation of a square
order of the video length. Due to this nature, attempts to detect
near-duplicates have been either approached by brute-force frame-
by-frame comparison for a relatively short video stream, or by se-
lecting representative frames from video segments [1, 2, 3]. In order
to detect near-duplicates from a long video stream, few efficient de-
tection methods have been proposed. Alike the method proposed in
this paper, their major approach is to take a two step detection strat-
egy; fast but rough detection in the first step, and slow but accurate
confirmation in the second step. Sekimoto et al. proposes a method
by clustering video fragments represented as a sequence of VQ his-
tograms [4]. Naturel and Gros proposes a method that makes use of

∗Also affiliated with National Institute of Informatics
†Currently at DENSO Corporation
‡Affiliated with Japan Society for the Promotion of Science

...
...

... ...

...

...

...

time

Frame-wise compressed
feature vectors

Video stream
(Frame sequence)

Video fragments
(frames)Nf

Time-wise compressed
feature vectors

Df dimensions

Dv dimensions

990 dimensions
(= 22 x 15 x 3)

Fig. 1. Spatiotemporal feature vector compression.

hash indices of features represented by DCT coefficients [5]. Yam-
agishi et al. proposes a method that compares frames by normalized
cross correlation (NCC) of their intensity histograms, accelerated by
the SR-Tree indexing method [6]. Yang et al. proposes a method
that compares frames by video correlation analysis combined with
locality sensitive hashing of color fingerprints [7]. These methods
do accelerate the detection, but they do not necessarily guarantee
that the detection in the first step has no false negatives. Considering
this problem, the method proposed in this paper guarantees that it
has no false negatives in the first step; the results are theoretically
equivalent to the brute-force frame-by-frame comparison.

In the following sections, first, a method that detects near-duplicate
video segments efficiently by feature compression is introduced in
Sect. 2. Next, to make the method more efficient, a genre-adaptive
feature extraction method that selects pixels with high dissimilarity
across frames is introduced in Sect. 3. Section 4 concludes the paper.

2. EFFICIENT DETECTION OF NEAR DUPLICATE
VIDEO SEGMENTS

2.1. Overview of the method

This section introduces a general framework that detects all pairs
of near-duplicates efficiently from a long video stream (Length: n
frames). The basic idea is to make the O(n2) times comparison as
fast and accurate as possible by 1) comparing the features of short
video fragments instead of a frame, and also by 2) compressing the
dimension of the feature vectors, as shown in Fig. 1. The first ap-
proach makes the comparison efficient and at the same time robust
to noise. Meanwhile, the second approach reduces computation time
together with i/o time and storage space which is a significant prob-
lem when processing a long video stream.

2.2. Selecting video features for compression

In order to compress video features efficiently, it is necessary to se-
lect features more informative than others. In the proposed method,
PCA (principal component analysis) is applied to feature vectors
composed of raw pixel values obtained from each frame of a training
video stream.

For preparation, each frame i extracted from an MPEG-1 video
stream (Original size: 352 × 240 pixels) is first degraded to 22 ×
15 pixels. Next, a feature vector � i =

�
fi,1, fi,2, ..., fi,mf

�T
is

composed by arranging the RGB values fi,j of all the pixels as an
array, which forms an mf = 990 (= 22×15×3) dimension vector.
In order to absorb color difference across different video sources, � i

is normalized to �̂ i (hereafter, frame vector) as follows:

µi =
1

mf

�mf

j=1
fi,j (1)

�̄ i =
�
fi,1 − µi, fi,2 − µi, ..., fi,mf − µi

�T
(2)

�̂ i = �̄ i/‖�̄ i‖ (3)

As shown in Fig. 1, the compression is realized by selecting fea-
tures by the following two steps:

1. Frame-wise feature selection
Create a matrix � =

�
�̂ i1

�̂ i2
... ˆ� iKf

�
by arranging Kf (≥

mf) frame vectors. Obtain the unit eigenvectors {�f,1,�f,2,
..., �f,Df

} corresponding to the top Df (≤ mf) large eigen-
values of the auto-correlation matrix �� = �� T . The vec-
tor space spanned by the basis 〈�f,1, �f,2, ..., �f,Df

〉 is used
as the frame-wise compressed feature space.

2. Time-wise feature selection
For each frame, transform the frame vector �̂ i on to the vec-
tor space 〈�f,1,�f,2, ..., �f,Df

〉 to obtain a frame-wise com-
pressed vector � ′

i as follows:

�
′
i =

�
�f,1�f,2...�f,Df

�T
�̂ i (4)

Next, Nf adjoining compressed frame vectors starting from
frame i are concatenated as a spatiotemporal feature vector
�̂i with a dimension of mv = DfNf :

�̂i =
�
�

′T
i ,� ′T

i+1, ..., �
′T
i+Nf−1

�T

(5)

where Nf is the size of the video fragments. A matrix � =�
�̂i1 �̂i2 ... ˆ�iKv

�
is created by arranging the Kv(≥ mv) spa-

tiotemporal vectors. Again, obtain the unit eigenvectors {�v,1,
�v,2, ..., �v,Dv} corresponding to the top Dv(≤ mv) large
eigenvalues of the auto-correlation matrix�� = � � T . The
vector space spanned by the basis 〈�v,1, �v,2, ..., �v,Dv 〉 is
used as the time-wise compressed feature space.

Thus is obtained the spatiotemporal compressed feature space
that efficiently represents the video segments.

2.3. Detecting near-duplicate video segments

2.3.1. Extraction of spatiotemporal feature vectors

The same preparation as in the training phase described in Sect. 2.2 is
applied to an input video stream. Likewise, a normalized input frame
vector �̂ i is frame-wise compressed by Eq. 4. It is then concatenated

Fragment A

Fragment B

1 frame shift

Nh frame shift
Nh frame shift

Nf

Nf

1 frame shift

..
.

...

Comparison

Fig. 2. Comparison between fragments. The reference fragment (A)
is shifted frame by frame, while the fragment to be compared (B) is
shifted by Nh frames at a time. In this case, segments longer than
Nmin = Nf + Nh frames could be detected.

with the following Nf − 1 compressed frame vectors as in Eq. 5 (=
�̂i) and then time-wise compressed by the following transformation:

�
′
i = [�v,1�v,2...�v,Dv]T �̂i (6)

In this manner, compressed spatiotemporal feature vectors are
created for all video fragments by shifting a window with a size of
Nf frames, frame by frame.

2.3.2. Step 1: Comparison of video fragments in the compressed
feature space

Video fragments i1, i2 are compared by the L2 distance d1 between
their spatiotemporal feature vectors as follows:

d1(�
′
i1 ,�′

i2) =

��Dv

l=1

�
v′

i1,l − v′
i2,l

�2

(7)

where v′
i,l represents the l-th component of a vector �′

i. When d1

is shorter then a threshold θ1, the fragments are considered as near-
duplicate candidates.

Theoretically, it is necessary to compare all fragments versus
all fragments, which results in

�
n−Nf +1

2

	
times of comparison for

a video stream with a length of n frames. This may however, be
reduced if we can restrict the minimum length of a near-duplicate
video segment that should be detected. As shown in Fig. 2, if the
minimum length is set to Nmin frames long, it is possible to skip
Nh = Nf − Nmin frames on one side of the comparison, which
results in reducing the total times of comparison. As a matter of
fact, when we consider general broadcast video streams as a tar-
get, the combination of Nf and Nh could be set to relatively high
numbers depending on the application. For example, when detect-
ing all commercials longer than Nmin = 900 frames (30 seconds)
and possibly some of those longer than 450 frames (15 seconds),
Nf = 450, Nh = 450 may be a good combination. Nf and Nh

may be any combinations as long as the constraints are met, but a
long Nf will make the detection stable, and a long Nh will reduce
the computation time.

2.3.3. Step 2: Confirmation of near-duplicate fragments in the orig-
inal feature space

The comparison of video fragments in the low-dimension feature
space derives numerous candidates of near-duplicate video fragment
pairs. In order to filter out false positives among the candidates, the
pairs are compared in the original (high-dimension) feature space by
the following function:

d2(�i1 ,�i2) =

��mv

l=1
(vi1,l − vi2,l)

2 (8)

Table 1. Parameters used in the experiment.

Kf , Kv 15,000 θ1 = θ2 0.8
Df 10 [dimensions] Nf 150 [frames]
Dv 10 [dimensions] Nh 150 [frames]

where �i =
�
�T

i ,�T
i+1, ..., �

T
i+Nf−1

�T

= [vi,1, vi,2, ..., vi,mv]T

and mv = mfNf . When d2 ≤ θ2, the fragments are confirmed as
near-duplicates.

Note that the distance d1 in the compressed feature space is al-
ways shorter or equals to the distance d2 in the original feature space,
due to the characteristics of L2 distance. This fact theoretically guar-
antees that if θ1 = θ2, the detection in the compressed feature space
is equivalent to the detection on the original feature space for video
fragments longer than Nf frames.

Since the cost for this process is comparable to the brute-force
frame-by-frame comparison, the key of improving the overall effi-
ciency is to suppress as much false positives as possible during the
candidate detection process.

2.3.4. Post-processing

After detecting near-duplicate fragments, precise boundaries are ob-
tained as a final result by adjusting them by frame-by-frame compar-
ison at both ends of the fragments.

2.4. Experiment

The proposed method was applied to broadcast video data to mea-
sure the computation time on a Pentium IV 3.0GHz PC with 1.0GB
of main memory. Parameters were set to the values shown in Tab. 1.
The parameters ensure the detection of near-duplicate video seg-
ments at least 300 frames (10 seconds) long.

In order to obtain bases general enough to compress most broad-
cast television video efficiently, 150 hours of continuous video stream
obtained from a Japanese channel during June 1–7, 2004 were used
as training data. The sample frames/fragments were selected ran-
domly.

The computation time measured by 1, 3, 6, 12, and 24 hours
of general video streams with many near-duplicates (mostly com-
mercials) is shown in Fig. 3. The computation time by brute-force
frame-by-frame comparison was also measured with the same simi-
larity threshold for comparison.

The result shows that the proposed method significantly reduces
the computation time required for the detection. Although the pro-
cess was more than 1,000 times faster, the result was equivalent
to that of the brute-force frame-by-frame comparison for segments
longer than Nmin frames. From the result, we estimate that it should
be possible to reduce the computation time required for a 1 week
long video stream from 50 years to 5 days.

3. GENRE-ADAPTIVE PIXEL SELECTION

The method proposed in Sect. 2 was applicable to general video
streams regardless of their contents. We have however, noticed that
depending on the genre of the shows, there are regions in a frame that
are mostly stable across frames, such as the gallery seats in a tennis
match, or the super-imposed caption area in a news show. In other
words, these regions are not appropriate to refer to when comparing
the difference of frames within the same genre or show. Considering

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

0 6 12 18 24

Length of video stream [hours]

C
om

pu
ta

tio
n

tim
e

[h
ou

rs
]

Proposed method

Brute-force frame-by-frame comparison

Fig. 3. Computation time for the detection.

this, in this section, we introduce a scheme that selects highly dis-
similar pixels across frames based on time-wise entropy, for better
comparison of the feature vectors.

3.1. Selecting significant pixels for comparison

The following schemes were applied to five shows in four genres of
broadcast video programs.

• Scheme 0: No selection (22 × 15 × 3 = 990 dimensions)
Obtain features from all the pixels in a frame. Identical to the
method described in Sect. 2.

• Scheme 1: Fixed selection
Obtain features from pixels in fixed locations.

– 1h: Horizontal line (22 × 3 = 66 dimensions)
Select pixels on a horizontal line in the center.

– 1v: Vertical line (15 × 3 = 45 dimensions)
Select pixels on a vertical line in the center.

• Scheme 2: Selection by time-wise entropy (Ds dimensions)
In order to select pixels highly dissimilar across frames, we
propose to evaluate the time-wise entropy Ej of the RGB val-
ues at each pixel.

Ej = −
�

c

Hj(c)

Ns
log2

Hj(c)

Ns
(9)

A certain number (�Ds
3
�) of pixels are selected according to

the entropy of the color histogram Hj(c) at pixel j created
across Ns frames.
The general method proposed in Sect. 2 also selects signifi-
cant pixels during the process of calculating auto-correlation
matrices. It however, considers only the overall amount of
dissimilarity in a given period of time, but not the temporal
changes of dissimilarity necessary to discriminate a frame to
another one.

3.2. Experiment

The pixel selection schemes were applied separately to four genres
and five shows as shown in Tab. 3.

The selected pixels were considered as the original feature vec-
tor � i, and the same procedure was applied as in the experiment in
Sect. 2.4. Parameters were set to the values as shown in Tabs. 1 and 2,
while the window size Ns for calculating the entropy was set to all
frames in the entire training video stream for each genre. Note that
the number of pixels Ds selected in Scheme 2 was set to 45, which

Table 2. Parameters used in the experiment.

Nf 30 [frames] Histogram bins 64
Nh 30 [frames] Ds 45

Table 3. Genres and corresponding data used in the experiment.

Genre Broadcaster Training data Test data
Tennis NHK (Japan) 120 min. 60 min.1

Soccer Fuji (Japan) 90 min. 60 min.1

Baseball Asahi (Japan) 100 min. 100 min.1

News JP NHK (Japan) 90 min. 50 min.
News US CNN (U.S.A.) 120 min. 30 min.

is the same as in Scheme 1v for fair comparison, and that the dimen-
sions Df , Dv of the compressed feature space were the same for all
schemes.

Figure 4 shows the ratio of the numbers of fragment pairs to
be confirmed in Step 2 against all combinations of frame-by-frame
comparison by the brute-force comparison. We can observe how
much times of comparison may be spared compared to the method
proposed in Sect. 2 (corresponds to Scheme 0: No selection) by ap-
plying the pixel selection schemes. Note that the precision is always
100% when the brute-force frame-by-frame comparison is consid-
ered as the ground-truth, since the method applies process equivalent
to that in Step 2. As for the recall, we confirmed that applying the
pixel selection scheme does not affect the performance; 100% recall.

Though there are some cases that fixed selection (Scheme 1) out-
performs others, selection by time-wise entropy (Scheme 2) always
outperforms the general method (Scheme 0). Among the genres,
pixel selection was especially effective when applied to those with
mostly fixed angles, but not always for those with relatively random
pictures. Thus, we conclude that Scheme 2 should be the best ap-
proach to automatically select significant pixels adaptive to shows or
genres.

The efficiency of applying Scheme 2, however, differs among
genres; it does not show significant improvement in genres such as
news, since most of the frame pictures do not have a common struc-
ture. On the other hand, it is generally effective (ranging from 1

227

to 1
5

) to genres related to sports with mostly fixed shots. This result
suggests that the dimension Ds may also be set according to each
genre, which we will investigate in the future.

4. CONCLUSION

We have proposed and evaluated an efficient and accurate method for
detecting all near-duplicate video segments in a long video stream.
Experiments showed that the method is more than 1,000 times faster
than brute-force frame-by-frame comparison with equivalent accu-
racy, and also that additional improvements may be possible in some
genres when significant pixels are selected for comparison.

In the future, we will implement efficient indexing methods, and
evaluate the method with a longer video stream. Using the detected
near-duplicates for higher-level applications, such as summarization
and story tracking are also included in future works.

We will also work on developing applications that make use of
the detected near-duplicate segments such as detecting same news

1Note that some short segments were artificially copied into the test data
for Tennis, Soccer, and Baseball, due to the lack of genuine near-duplicates
in the original video streams.

0.
04

%

0.
11

%

0.
14

%

0.
12

%

0.
11

%

0.
54

%

3.
10

%

0.
02

%

0.
09

%

0.
12

%0.
67

%

0.
61

%

0.
06

%

0.
36

%

1.
54

%

0.
70

%

0.
13

%

0.
38

%

0%

2%

4%

Tennis Football Baseball News_JP News_US
Genre / show

T
im

es
 o

f
co

m
pa

ri
so

n
ag

ai
ns

t
fr

am
e-

by
-f

ra
m

e
co

m
pa

ri
so

n

2: Time-wise entropy
1h: Horizontal line
1v: Vertical line
0: No selection

5.
93

%

9.
11

%

Fig. 4. Reduction of the times of comparison.

events across different channels broadcast in different languages [8].

5. ACKNOWLEDGMENTS

Parts of this work were supported by the Grants-in-Aid for Scientific
Research and the 21st century COE program from the Ministry of
Education, Culture, Sports, Science and Technology, and the Japan
Society for the Promotion of Science, and also by the Research Grant
from Kayamori Foundation of Information Science Advancement.

6. REFERENCES

[1] Pinar Duygulu, Jia-Yu Pan, and David A. Forsyth, “Towards
auto-documentary: Tracking the evolution of news stories,” in
Proc. 12th ACM Intl. Conf. on Multimedia, Oct. 2004, pp. 820–
827.

[2] Yun Zhai and Mubarak Shah, “Tracking news stories across
different sources,” in Proc. 13th ACM Intl. Conf. on Multimedia,
Nov. 2005, pp. 2–10.

[3] Dong-Qing Zhang and Shih-Fu Chang, “Detecting image near-
duplicate by stochastic attributed relational graph matching with
learning,” in Proc. 12th ACM Intl. Conf. on Multimedia, Oct.
2004, pp. 877–884.

[4] Nobuhiro Sekimoto, Takuichi Nishimura, Hironobu Takahashi,
and Ryuichi Oka, “Continuous retrieval of video using
segmentation-free query,” in Proc. 15th Intl. Conf. on Pattern
Recognition, Sept. 2000, pp. 375–378.

[5] Xavier Naturel and Patrick Gros, “A fast shot matching strat-
egy for detecting duplicate sequences in a television stream,” in
Proc. 2nd Intl. Workshop on Computer Vision meets Databases,
June 2005, pp. 21–27.

[6] Fuminori Yamagishi, Shin’ichi Satoh, Takashi Hamada, and
Masao Sakauchi, “Identical video segment detection for large-
scale broadcast video archives,” in Proc. 3rd Intl. Workshop on
Content-Based Multimedia Indexing, Sept. 2003, pp. 135–141.

[7] Xianfeng Yang, Ping Xue, and Qi Tian, “A repeated video clip
identification system,” in Proc. 13th ACM Intl. Conf. on Multi-
media, Nov. 2005, pp. 227–228.

[8] Ichiro Ide, Kazuhiro Noda, Akira Ogawa, Shin’ichi Satoh, and
Hiroshi Murase, “Semantic analysis of a large-scale news video
archive,” in Proc. Asia-Pacific Workshop on Visual Information
Processing (VIP) 2006, Nov. 2006, pp. 166–171.

