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Abstract. We propose a method for interpolation between eigenspaces.
Techniques that represent observed patterns as multivariate normal dis-
tribution have actively been developed to make it robust over observation
noises. In the recognition of images that vary based on continuous pa-
rameters such as camera angles, one cause that degrades performance is
training images that are observed discretely while the parameters are var-
ied continuously. The proposed method interpolates between eigenspaces
by analogy from rotation of a hyper-ellipsoid in high dimensional space.
Experiments using face images captured in various illumination condi-
tions demonstrate the validity and effectiveness of the proposed interpo-
lation method.

1 Introduction

Appearance-based pattern recognition techniques that represent observed pat-
terns as multivariate normal distribution have actively been developed to make
them robust over observation noises. The subspace method [1] and related tech-
niques [2,3] enable us to achieve accurate recognition under conditions where
such observation noises as pose and illumination variations exist. Performance,
however, degrades when the variations are far larger than expected. On the other
hand, the parametric eigenspace method [4] deals with variations using manifolds
that are parametric curved lines or surfaces. The manifolds are parameterized
by parameters corresponding to controlled pose and illumination conditions in
the training phase. This enables object recognition and at the same time pa-
rameter estimation that estimates pose and illumination parameters when an
input image is given. However, this method is not very tolerant of uncontrolled
noises that are not parameterized, e.g., translation, rotation, or motion blurring
of input images.

Accordingly, Lina et al. have developed a method that embeds multivariate
normal density information in each point on the manifolds [5]. This method
generates density information as a mean vector and a covariance matrix from
training images that are degraded by artificial noises such as translation, ro-
tation, or motion blurring. Each noise is controlled by a noise model and its
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parameter. To obtain density information between consecutive poses and gen-
erate smooth manifolds, the method interpolates training images degraded by
the identical noise model and the parameter between consecutive poses. By con-
sidering various other observation noises, however, controlling noises by model
and parameter is difficult; therefore, making correspondence between training
images is not realistic. Increasing computational cost with a growing number of
training images is also a problem.

In light of the above background, we propose a method to smoothly inter-
polate between eigenspaces by analogy from rotation of a hyper-ellipsoid in a
high dimensional space. Section 2 introduces the mathematical foundation, the
interpolation of a rotation matrix using diagonalization and its geometrical sig-
nificance, followed by Section 3, where the proposed interpolation method is
described. Section 4 demonstrates the validity and effectiveness of interpolation
by the proposed method from experiment results using face images captured in
various illumination conditions. Section 5 summarizes the paper.

2 Interpolation of Rotation Matrices in an n-Dimensional
Space

2.1 Diagonalization of a Rotation Matrix

An n × n real number matrix nR is a rotation matrix when it satisfies the
following conditions:

nR nR
T = nR

T
nR = nI, det(nR) = 1, (1)

where AT represents a transpose matrix of A and nI represents an n×n identity
matrix. nR can be diagonalized with an n × n unitary matrix and a diagonal
matrix nD including complex elements as

nR = nUnDnU
†. (2)

Here, A† represents a complex conjugate transpose matrix of A. The following
equation is obtained for a real number x:

nR
x = nUnD

x
nU

†. (3)

nR
x represents an interpolated rotation when 0 ≤ x ≤ 1 and an extrapolated

rotation in other cases. This means that once Un is calculated, the interpolation
and extrapolation of nR can be easily obtained.

2.2 Geometrical Significance of Diagonalization

A two-dimensional rotation matrix 2R(θ) whose θ(−π < θ ≤ π) is its rotation
angle can be diagonalized as

2R(θ) = 2U2D(θ)2U †, (4)
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where

2R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
, (5)

2D(θ) =
[
eiθ 0
0 e−iθ

]
. (6)

Here, since eiθ = cos θ + i sin θ (Euler′s formulaC|eiθ| = |e−iθ| = 1), 2R(θ)x =
2R(xθ) as well as 2D(θ)x = 2D(xθ) for a real number x.

The Eigen-equation of nR has m sets of complex conjugate roots whose ab-
solute value is 1 when n = 2m. Meanwhile, when n = 2m + 1, nR has the same
m sets of complex conjugate roots and 1 as roots. Therefore, nD in Equation 2
can be described as

nD(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

2D(θ1) · · · 0
...

. . .
...

0 · · · 2D(θm)

⎤
⎥⎦ (n = 2m)

⎡
⎢⎢⎢⎢⎣

1 · · · 0

2D(θ1)
...

...
. . .

0 · · · 2D(θm)

⎤
⎥⎥⎥⎥⎦ (n = 2m + 1)

(7)

by an m dimensional vector θ = (θj | − π < θj ≤ π, j = 1, 2, · · · , m) composed of
m rotation angles. Thus Equation 2 can be described as

nR(θ) = nUnD(θ)nU
†. (8)

This means that nR
x in Equation 3 is obtained as nR(xθ) by simply linearly

interpolating the vector.
Additionally,

nR(θ) = nUnU
′†

nR
′(θ)nU

′
nU

†. (9)

Here, when n = 2m + 1,

nR
′(θ) =

⎡
⎢⎢⎢⎢⎣

1 · · · 0

2R(θ1)
...

...
. . .

0 · · · 2R(θm)

⎤
⎥⎥⎥⎥⎦ , (10)

nU
′ =

⎡
⎢⎢⎢⎢⎣

1 · · · 0

2U
...

...
. . .

0 · · · 2U

⎤
⎥⎥⎥⎥⎦ . (11)

Meanwhile, when n = 2m, nR
′(θ) and nU

′ are obtained by removing the first
column and the first row from the matrix in the same way as Equation 7. Because
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x

Fig. 1. Pose interpolation for a four-dimensional cube

the set of all n-dimensional rotation matrixes forms a group with multiplication
called the SO(n) (Special Orthogonal group), nUnU

′† can be transformed into a
rotation matrix nR

′′; therefore, using only real number rotation matrices, nR(θ)
can be described as

nR(θ) = nR
′′

nR
′(θ)nR

′′T . (12)

Using this expression, computational cost and memory are expected to be re-
duced in the sense of using real number matrices instead of complex number
matrices. Note that the interpolated results are identical to those obtained from
the simple diagonalization shown in Equation 2. nR

′(θ) represents rotations
on m independent rotational planes where no rotation affects other rotational
planes. This means that Equation 12 expresses nR(θ) as a sequence of rotation
matrices that are a unique rotation nR

′′ for nR(θ), a rotation on independent
planes nR

′(θ), and the inverse of the unique rotation matrix.

2.3 Rotation of a Four-Dimensional Cube

We interpolated poses of a four-dimensional cube using the rotation matrix in-
terpolation method described above. First, two rotation matrices, R0, R1, were
randomly chosen as key poses of the cube, and then poses between the key poses
were interpolated by Equation 13. For every interpolated pose, we visualized the
cube by a wireframe model using perspective projection:

Rx = R0→1(xθ)R0. (13)

Here, Ra→b(θ) = RbRa
T . This equation corresponds to the linear interpolation

of rotation matrices. Figure 1 shows the interpolated results. To simplify seeing
how the four-dimensional cube rotates, the vertex trajectory is plotted by dots.

3 Interpolation of Eigenspaces Using Rotation of a
Hyper-Ellipsoid

3.1 Approach

The proposed method interpolates eigenspaces considering an eigenspace as a
multivariate normal density. The iso-density points of a multivariate normal
density are known to form a hyper-ellipsoid surface. Eigenvectors and eigenvalues
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Fig. 2. Interpolation of hyper-ellipsoids

can be considered the directions of the hyper-ellipsoid’s axes and their lengths,
respectively. We consider that the eigenspaces between two eigenspaces could be
interpolated by rotation of a hyper-ellipsoid with the expansion and contraction
of the length of each axis of the ellipsoid (Figure 2).

The interpolation of ellipsoids has the following two problems. First, the corre-
spondence of one ellipsoid’s axes to another ellipsoid’s axes cannot be determined
uniquely. Secondly, the rotation angle cannot be determined uniquely because
ellipsoids are symmetrical. From these problems, in general, ellipsoids cannot
be interpolated uniquely from two ellipsoids. The following two conditions are
imposed in the proposed method to obtain a unique interpolation.

[Condition 1] Minimize the interpolated ellipsoid’s volume variations.
[Condition 2] Minimize the interpolated ellipsoid’s rotation angle variations.

3.2 Algorithm

When two multivariate normal densities N0(μ0, Σ0) and N1(μ1, Σ1) are given,
an interpolated or extrapolated density Nx(μx, Σx) for a real number x is cal-
culated by the following procedure. Here, μ and Σ represent an n-dimensional
mean vector and an n × n covariance matrix, respectively.

Interpolation of mean vectors: μx is obtained by a simple linear interpola-
tion by the following equation. This corresponds to interpolation of the ellipsoids’
centers.

μx = (1 − x)μ0 + xμ1. (14)

Interpolation of covariance matrices: Eigenvectors and eigenvalues of each
covariance matrix have information about the pose of the ellipsoid and the
lengths of its axes, respectively. First, n × n matrices E0 and E1 are formed
by aligning each eigenvector e0j and e1j(j = 1, 2, · · · , n) of Σ0 and Σ1. At
the same time, n-dimensional vectors λ0Cλ1 are formed by aligning eigenvalues
λ0j , λ1j(j = 1, 2, · · · , n).
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[Step 1] To obtain the correspondences of axes between ellipsoids based on
[Condition 1], E′

0 and E′
1 are formed by sorting eigenvectors in E0 and E1

in the order of their eigenvalues. λ′
0 and λ′

1 are formed from λ0Cλ, as well.
[Step 2] Based on [Condition 2], e′

1j(j = 1, 2, · · · , n) is inverted if e′
0j

T
e′

1j < 0
so that the angle between corresponded axes is less than or equal to π

2 .
[Step 3] e′

0n is inverted if det(E′
0) = −1, and e′

1n is inverted if det(E′
1) = −1,

as well, so that E′
0 and E′

1 should meet Equation 1.

The eigenvalue of Σx, λxj is calculated by

λxj =
(
(1 − x)

√
λ′

0j + x
√

λ′
1j

)2
, (15)

and its eigenvectors Ex is calculated by

Ex = R0→1(xθ)E′
0. (16)

Here, R0→1(θ) = E′
1E

′
0
T D Therefore, Σxis calculated by

Σx = ExΛxEx
T . (17)

HereCΛx represents a diagonal matrix that has λxj(j = 1, 2, · · · , n) as its diag-
onal elements.

4 Experiments Using Actual Images

To demonstrate the effectiveness and validity of the proposed interpolation
method, we conducted face recognition experiments based on a subspace method.
Training images were captured from two different angles in various illumination
conditions, whereas input images were captured only from intermediate angles.
In the training phase, a subspace for each camera angle was constructed from im-
ages captured in different illumination conditions. We compared the performance
between recognition by the two subspaces and the interpolated subspaces.

4.1 Conditions

In the experiments, we used the face images of ten persons captured from three
different angles (two for training and one for testing) in 51 different illumination
conditions. Figures 3 and 4 show examples of the persons’ images and images
captured in various conditions. In Figure 5, images from camera angles c0 and
c1 were used for training and c0.5 for testing. The images were chosen from the
face image dataset, “Yale Face Database B”[6].

We represented each image as a low dimensional vector in a 30-dimensional
feature space using a dimension reduction technique based on PCA. In the train-
ing phase, for each person p, autocorrelation matrices Σ

(p)
0 and Σ

(p)
1 were calcu-

lated from images obtained from angles c0 and c1, and then matrices E
(p)
0 and

E
(p)
1 were obtained that consist of eigenvectors of the autocorrelation matrices.
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Fig. 3. Sample images of ten persons’ faces used in experiment

Fig. 4. Sample images captured in various illumination conditions used in experiment

In the recognition phase, the similarity between the subspaces and a test
image captured from c0.5 were measured, and recognition result p̂ was obtained
that gives maximum similarity. The similarity between an input vector z and
the K(≤ 30)-dimensional subspace of E

(p)
x is calculated by

S(p)
x (z) =

K∑
k=1

< e
(p)
x,k, z >2, (18)

where E
(p)
x (0 ≤ x ≤ 1) is the interpolated eigenspace between E

(p)
0 and E

(p)
1

and < ·, · > represents the inner product of the two vectors. E
(p)
x is calculated

by Equation 16.
The proposed method that uses the subspaces of the interpolated eigenspaces

obtains p̂ by

p̂ = argmax
p

max
0≤x≤1

(
S(p)

x (z)
)

. (19)

On the other hand, as a comparison method, the recognition method with
subspaces of E

(p)
0 and E

(p)
1 obtains p̂ by

p̂ = arg max
p

max
(
S

(p)
0 (z), S

(p)
1 (z)

)
. (20)

We defined K = 5 in Equation 18 empirically through preliminary experiments.

c1c0.5c0

Fig. 5. Sample images captured from three camera angles used in experiment
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Table 1. Comparison of recognition rates

Recognition Method Recognition Rate [%]
Interpolated subspaces by proposed method (Eq. 19) 71.8
Two subspaces (Eq. 20) 62.6

0

1

2

3

4

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

B
h
a
tt
a
c
h
a
r
y
y
a
 D
is
ta
n
c
e

Fig. 6. Bhattacharyya distances between actual normal density and interpolated
densities

4.2 Results and Discussion

Table 1 compares the recognition rates of the two methods described in 4.1.
From this result, we confirmed the effectiveness of the proposed method for face
recognition.

For verification of the validity of interpolation by the proposed method,
Figure 6 shows the Bhattacharyya distances between normal density obtained
from c0.5 and the interpolated normal densities from x = 0 to x = 1 for a person.
Since the distance becomes smaller around x = 0.5, the validity of interpolation
by the proposed method can be observed. In addition, Figure 7 visualizes the
interpolated eigenvectors from x = 0 to x = 1 of the person. We can see that
the direction of each eigenvector was changed smoothly by high dimensional
rotation.

5 Summary

In this paper, we proposed a method for interpolation between eigenspaces. The
experiments on face recognition based on the subspace method demonstrated
the effectiveness and validity of the proposed method.

Future works include expansion of the method into higher order
interpolation such as a cubic spline and recognition experiments using larger
datasets.
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Fig. 7. Interpolated eigenvectors
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