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Surface Shape Reconstruction of a Nonrigid
Transparent Object Using Refraction and Motion

Hiroshi Murase

Abstract—The appearance of a pattern behind a transparent, moving
object is distorted by refraction at the moving object’s surface. This
paper describes an algorithm for reconstructing the surface shape of a
nonrigid transparent object, such as water, from the apparent motion of
the observed pattern. This algorithm is based on the optical and statistical
analysis of the distortions. It consists of the following parts: 1) extraction
of optical flow, 2) averaging of each point trajectory obtained from the
optical flow sequence, 3) calculation of the surface normal using optical
characteristics, and 4) reconstruction of the surface. The algorithm is
applied to both synthetic and real images to demonstrate its performance.

Index Terms—Computer vision, image recovery, motion analysis, opti-
cal flow, surface reconstruction.

I. INTRODUCTION

One of the primary tasks of a computer vision system [1] is
to capture 3-D information, such as surface orientation, from 2-D
images. This task is usually difficult. However, if some cues are
known about the scene, such as stereopsis (e.g., [2], [3]), shading
(e.g., [4], [5]), contour (e.g., [6], [7]), texture (e.g., [8], [9]), and
motion (e.g., [10]-{18}), 2-D images may provide information about
the surface. This information is first converted into local surface
orientation [19] and then into the shape of the surface. This cor-
respondence proposes a method for reconstructing the surface shape
of an undulating transparent object, such as a water surface, using the
cues of refraction and motion. Surface orientation is made from the
moving (apparent distortion) of patterns viewed through the object.
This approach is similar to the method called shape from motion.
The previous work in shape from motion involves reconstructing a
3-D structure from movement of several points on the object based
on an assumption of rigidity (e.g., Ullman ez al. [10]-[17]). The
method described in this paper does not use the rigidity assumption
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but uses physical characteristics such as optical laws and statistical
motion features of the object. In addition, the method uses points on
refracted images rather than points on the object.

In this method, the objects should have the following two charac-
teristics: 1) They should be transparent with a refraction index not
equal to unity, and 2) their surface shape should be deformed around
an average surface whose shape is known. To clarify the essence
of the idea, an example of a water surface with waves [20], [21],
like the surface of a pool or river, is used. Because of refraction at
the water surface, the observed pattern of objects under water with
waves appears to be moving. Note that human beings can perceive
the surface shape from the observed moving pattern. In this case, the
above two characteristics correspond to the following: 1) Water is
transparent and has a refraction index of 1.33; 2) the average surface
is usually a plane whose surface normal is vertical, and a wave can be
regarded as a deformation from the average shape. The goal here is
to reconstruct the shape of the water surface from deformed images
observed through the waving water and, in so doing, recover the
original pattern under the water. The original pattern under the water
is assumed to be unknown.

This method has two main original ideas. First, it can be considered
to be the inverse operation of the ray-tracing approach. The ray-
tracing technique is a common method in the field of computer
graphics. It is based on an optical law such as a refraction law
(Snell’s law) or a reflection law and is used to synthesize the images
from the given model (shapes of the objects). For example, Ts’o [22]
synthesized ocean wave images using physical characteristics and
ray-tracing techniques.

Second, this method uses the idea that the pattern observed through
the undulating surface is deformed around the pattern observed
through the average surface. In the simplest case of the top view
and orthographic projection, the average coordinate of the trajectory
of a certain point on the distorted pattern corresponds to the the point
observed through the static flat water surface. This means that the
average position of the point becomes the position obsered when
there is no water.

The algorithm consists of the following four parts:

1) Optical flow is calculated from an image sequence observed
through the moving water surface. Here, “optical flow” refers to
point-to-point correspondence between two succeeding image
frames. A trace of the optical flow becomes the trajectory of
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Fig. 1.(a) Original pattern; (b) pattern observed through water with a smooth
wave; (c) pattern observed through water with a steep wave; (d) observation
system.

the point.

2) The average of the trajectory of the each point in the image
is calculated; we call this the center of trajectory (COT). The
COT corresponds to the point observed through the average
surface.

3) The surface normal of each point in each frame is calculated
using optical characteristics. The distance between the COT
and the position of the corresponding point in the image is
restricted by the optical law (Snell’s refraction law), and it is
related to the surface normal.

4) The shape of the surface at each point in time can be recon-
structed by 2-D integration of the surface normal.

This kind of algorithm offers several new possibilities. For ex-
ample, a transparent object’s shape can be passibly measured, and
quality pictures can be taken through transparent undulating objects.

The organization of the paper is as follows. Section II introduces
the object treated and summarizes the necessary assumptions. Sec-
tion TII summarizes the relevant optical characteristics. Section IV
explains the algorithm, using synthesized images, which reconstructs
the shape of the nonrigid surface and recovers the bottom pattern from
the distorted image sequence. Section V describes the application
of the method to natural images. Finally, an error estimate for the
method is computed.

II. OBIECT

First, a brief example is presented. Fig. 1(a) is an image from
the image database SIDBA distributed by Tokyo University. Let us
assume that the image is put at the bottom of a pool with waving
water like Fig. 1(d). The pattern seen through the water would be
distorted and would look, for example, like Fig. 1(b) for a smooth
wave and like Fig. 1(c) for a steep wave. The purpose of our study
is first to reconstruct the wave shape from a time series of distorted
patterns and finally to detect the original pattern of Fig. 1(a).

A. Conditions

To make the problem tractable, the following three conditions were
introduced:
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1) The amplitude of the wave is small enough that elimination or
separation of the pattern does not occur in the observed images
(i.e., Fig. 1(b)). Fig. 1(c) is an example containing climination
and separation; therefore, it is beyond the scope of our research
at present.

2) The camera is far from the object (orthographic projection).

3) All points in the image are in focus (pin hole camera).

B. Assumptions

The following three assumptions are made in the method. Note
that the assumption of periodic movement or periodic shape of the
surface is not used:

1) The average slant of the wave surface over a long time period
is zero.

2) Water is transparent and refractive.

3) The pattern in the water is static and flat.

C. Known Parameter

The following parameters, if known, allow the precise surface
shape to be determined. If these are not known, the surface shape
may still be determined within a scale factor:

1) Distance k between the water surface and the bottom of the

tank

2) refraction index n of water.

1II. RELATION BETWEEN DISPLACEMENT AND SURFACE ORIENTATION

Fig. 2(a) is a picture of a rigid transparent sphere on a checker
pattern, and (b) is a picture of a pond with waves. We can perceive
the refractive sphere in Fig. 2(a). In this case, it is assumed that
the background pattern is regular. This case represents the problem
of reconstructing the shape of a rigid transparent medium atop
a known static pattern. On the contrary, we cannot perceive the
waving water (only scattered stones) in the static picture of Fig. 2(b)
because the background pattern is irregular (the background pattern
is unknown). If dynamic images are provided, however, we could
perceive the water very clearly. This case represents the problem of
reconstructing the shape of a nonrigid transparent medium atop an
unknown static pattern. In this situation, we unconsciously use several
assumptions like those in Section II, especially the assumption of
nonrigid motion around the average surface (see assumption 1) in
the previous section). This problem is treated in this paper. In the
waving water example, the only physical assumptions introduced are
that water is a transparent substance with a certain refraction index
and that the average slant of waves in a long time scale converges
to zero. When a stone falls into water or the wind blows, a complex
pattern is generated on the water surface. These wave patterns are
generally complicated due to the governing fluid dynamics. To keep
the application areas as broad as possible, additional assumptions
regarding dynamic behavior have not been introduced, and in fact,
such assumptions are not necessary for the problem of Section IL.

A. Optical Characteristics

The refraction law, which is generally known as Snell’s law, is
effective for this problem with respect to several optical characteris-
tics such as refraction, reflection, polarization, and color dispersion.
The principle theory of the method based on the refraction law is
illustrated in Fig. 3. Assuming orthographic projection, a small area
of the image, which is located at P, is observed to be at @ due to
refraction at the water surface. Here, Snell’s law is expressed by the
vector equation

n¥— §= N(ncosb — cosa) 1)
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Fig. 2. Shape perception of transparent objects: (a) Rigid transparent sphere;
(b) pond with waving water.
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Fig. 3. Optical law of refraction.

where n is the refraction index, N is the surface normal, 3 is a unit
vector of the ray in air, 7 is a unit vector of the ray in water, a is the
incident angle, and b is the refractive angle. The deformation vector
D is given by

D=

— bz @

For the case of orthographic projection, the displacement D shows
the difference between the position of a point on the observed
image and the position on the underwater image. In other words,
the observed image is distorted because of the displacement D.

In order to solve these simultaneous vector equations for D
using (1) and (2), the unknown vector variables are replaced by the
following variables:

(0,0,1) &)
= (r2,7y,72) @

-
s
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Here, vector 5 can be expressed by (3) because of the assumption
of orthographic projection.

If we rearrange the above equations, d. and d, are given by the
following equations:

vn2—k?+1-1

dy = h 10
P i1+ k2 (10)
ViR FI-1 an

dy=h .
VM Rl 14 k2

The vector (p,q) is gradient of the surface. k is a weight for
normalizing the surface normal N.

Provided that k ~ 1, the water surface is quiet enough. The
equations under these conditions are approximated by

1

do = hp(1- =) (12)
1
dy = hg(l - ;). (13)

B. Statistical Characteristics

It is an appropriate assumption regarding water that the average
surface normal converges to a vertical line as time passes. This
statistical characteristic comes from the motion randomness of the
waving water; it can be explained by the following. Typical wave
patterns, for example, appearing on a pool surface can be assumed
to be superposed patterns of sine waves with different wave lengths
and wave speeds. Such wave patterns can be expressed by

flz,y,t) = Z a; sin(u;x + viy — wit)

1

(14)

where (u;,v;) is the wavenumber, w; is the angular frequency, a;
is the amplitude, and f(z,y,t) is the wave height at position (x,y)
and time t. The surface normal % at a certain point (z,y) can
be obtained from the following equations for p and ¢

af o , s
=-5 " Ei a;u; cos(u;x + vy — wit) (15)
__of __ . y  — W
=-7 = E a;v; cos{u;x + viy — w;it). (16)

?

Thus, average values p' and g', with respect to time, of p and ¢

are expressed by
1T
= = dt
p T /0 p

;1 (T
= = dt.
q T/o q

Assuming that w; is never equal to zero, p’ and ¢’ will converge
to zero as T increases. In special situations, such as a continuous
spout of water, w; in (17) and (18) can be zero. In such a case, p’
and ¢’ would not converge to zero, and the accuracy of the shape
reconstruction would be reduced.

17)

(18)
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Frame 1 Frame 2 Frame 3

Fig. 4. Sequence of wave surface shape for synthesizing images.

Fig. 5. Synthesized image sequence distorted by refraction.

IV. RECONSTRUCTION ALGORITHM

A. Outline of the Algorithm

The purpose of the algorithm is to reconstruct the shape of the
water surface and to detect the image under the water. It consists of
the following four steps: 1) extraction of optical flow, 2) averaging the
trajectory of each point in the observed images, 3) calculation of the
surface slant using optical characteristics, and 4) shape reconstruction.
Each step is detailed in the following experiments using synthesized
images.

B. Synthesized Image

Synthesized images were used to demonstrate the method. The
images were synthesized by the ray-tracing method. Let us look at
one of the examples. Let the pattern of Fig. 1(a) (50 x 50 cm)
be an underwater pattern. The depth of the water is 50 cm. The
sine wave moves diagonally from the upper left of the image to the
lower right along the water surface. The maximum slant is 5.0°, the
wavelength is 16.6 cm (three cycles in 50 cm), and the wave speed is
2.1 cm/frame (cight frames = one cycle). Fig. 4 shows a sequence of
wave surface shapes for synthesizing images (frames 1, 2, and 3). The
viewing point is high enough that the projection can be approximated
as orthographic. Fig. 5 shows dynamic images (frames 1, 2, 3, and 4)
obtained by this method. In this case, the surface shape is periodic.
However, the algorithm can also reconstruct a water surface that is
not clearly periodic.

C. Extraction of Optical flow

Optical flow expresses the movement of a certain point in the
images from one time to another. The optical flow vector at a point
corresponds to the speed and direction of motion at that point. For
computation, the gradient method (e.g., [23]), the correlation method
(e.g., [24]) and the token tracking method are well known. Various
methods were used for various patterns. The correlation method,
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Fig. 6. Extraction of optical flow.

which is a simple algorithm, is applied to these synthesized images
since correlative features are preserved throughout the series of
images at different frames in the experiment. The correlation value
d(i',j') between the rectangle (with side length a) nearest to (i.4)
in the tth frame and the rectangle nearest to (i -+ ¢',j + j') in the
(t + 1)th frame is determined from the following equation:

diljh= S fHT ki LD

SE<kl<SE
— fli+kj+1.1) 19)
!

The vector (i'.j') that makes d(i’, ;') smallest is considered to be
the optical flow of (i,j) at time ¢. Fig. 6 shows an example of an
optical flow map extracted by this method.

D. Center of the Trajectory (COT)

In this section, we define COT, which is the main point of the
algorithm, and we suggest a method that uses COT to recover
the underwater pattern, which is the second purpose of this paper.
Consider a certain point P; in the observed image at time ¢. The
trajectory of P, is derived from the optical flow. Here, the trajectory
is neither separated nor eliminated because of the assumption that
the amplitude of water is small. The average coordinate (z,y)
of the trajectory of P; is defined as the COT of point F%. This
corresponds to the position of P, whose surface has an average
shape with time. The average surface normal generally converges to
zero (horizontal flat surface). In most cases, the convergence can be
detected when |COT(usingP1,P2,4..,Pt) - COT(usingpl‘Pg,...,PtH)|
is less than some threshold for all points.

Fig. 7(a) shows the obtained COT’s of periodically placed points
at a certain frame of the above synthesized images, whereas Fig. 7.(b)
shows the theoretically correct COT’s.

The underwater pattern can be recovered by using the COT. The
image obtained by mapping all pixels of an observed image at a
certain time on their corresponding COT will be the image as seen
through a flat water surface if orthographic projection can be assumed.
The recovered image of a synthesized sequence is shown in Fig.
8. The remaining distortion in this image is only due to incorrect
extraction of optical flow.

E. Gradient Vector Field

If the points (x:,y:) and COT (z',3") of a point are known, the
direction of the vector normal to the water surface (p:,¢:) at (x¢, yt)
can be calculated from (12) and (13). The gradient at (2+,y:) is thus
obtained from
(e — z\n

=3y (29
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Calculated center of trajectory; (b) theoretically correct center of
trajectory.

Fig. 7(a).

Fig. 8. Recovered underwater pattern.
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It requires a large amount of computation to extract the optical flow
vector for all points in the image. Therefore, optical flows, COT’s,
and gradient vectors are first computed corresponding to the selected
points, and the gradient vector of each pixel is calculated by averaging
the gradient vector of four points adjacent to the pixel. Gradient
vectors of different points in image frame 1 are shown in Fig. 9.
Here, the vectors are thinned out for clarity. This figure is also called
the needle map.

F. Shape Reconstruction

When the gradient vectors of each point are given, the surface
shape can be reconstructed by integrating them over the X and Y
dimensions. The reconstructed surface shapes for frames 1, 2, and
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Fig. 9. Vector field showing surface normal.

Frame 1

Frame 2 Frame 3

Fig. 10. Shape reconstruction of wave surface.

3 are illustrated in Fig. 10. The Z direction has been expanded for
clarity.

V. EXPERIMENT WITH REAL IMAGES

A. Collecting Data

A TV camera was used to collect data. First, 2 x 2 mm black dots
were randomly scattered on a blank sheet of paper by a computer.
The paper was fixed on the bottom of a water tank with a water
depth A = 25 cm. This situation is similar to the one where black
stones are scattered randomly in a pond. Waves were then induced
by stirring the water. A video camera was placed 1 m from the water
surface. The camera produced an image of 512 x 480 pixels, and
the focal length was fixed so that one pixel on the sampled image
corresponded to 0.5 x 0.5 mm on the underwater pattern. Ninety
frames of dynamic images were collected at a rate of 30 frames/s for
3 5. We applied the algorithm to the black dot pattern because this
case is relatively simple for optical flow extraction. Application of
the algorithm to continuous shading images in a real situation is a
problem that will be dealt with later.

B. Preprocessing

In the case of actual images, shading occurs due to the camera’s
characteristics, imbalanced illumination, light refraction at the water
surface, and so on. Therefore, prior shading correction is necessary.
We made images with large-radius Gaussian filters for each frame. We
took the average of the 30 images and produced a shading correction
image. Desired images were then generated by subtracting the shading
correction image from the original images. Figs. 11(a) and (b) are
examples of original images (frames 1 and 2), (c) is an example of a
shading image, and (d) is the corrected image of frame 1.

C. Extraction of Optical Flow

For these images, black pixel clusters are useful tokens for optical
flow extraction. The process based on the token tracking method is as
follows. First, the shading corrected images are binarized, and then,
parts having more than a specified number of black pixels are picked
up. The optical flow is extracted by tracing these parts. The optical
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(b)
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Fig. 11. (a), (b) Observed image sequence (frames 1 and 2); (c) shading
image; (d) image of the corrected shading (frame 1).

Fig. 12. Optical flow.

flow obtained by this method was manually checked and found to
contain no errors. Fig. 12 is an optical flow map extracted from
frame 6.

D. Determination of COT

Fig. 13 shows the trace of a certain point on the image for 0.66 s
(20 frames) using optical flow. From this result, it can been seen that
the locus of a point moves around a certain point of the real image.
The COT can be calculated in the same way as explained in Section
IV-D. Fig, 14 shows calculated COT’s and the actual pattern of black
points located at the bottom of the water.

E. Computation of Gradient Vector Field

The gradient vector field was calculated using the positional
relation between a point and its COT, as explained in Section IV-
E. As an example, the gradient vector field for frame 6 is shown in
Fig. 15.

-+
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+ o, o Actual dot position
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Frame 5 Frame 6 Frame 7

Fig. 16. Sequence of reconstructed surface shape.

F. Shape Reconstruction

The shape of the wave was reconstructed from the gradient vector
field using the method of Section IV-F. Fig. 16 shows the sequence
of reconstructed surface shapes for frames 5 through 7. Thus, it has
been demonstrated that the wave shape can also be reconstructed for
a real image sequence. Therefore, the algorithm presented here is
useful for shape reconstruction in a passive observation system.

VI. SHAPE RECONSTRUCTION ERRORS

Errors in shape reconstruction are evaluated in this section. The
errors are mainly due to 1) failure in extracting optical flow and
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Frame 5

Frame 3

Frame 1

Fig. 17. Surface shape reconstruction using only the first N frames.

0 10 20 30 40
Frame count

Fig. 18. Estimated errors of the surface shape reconstruction.

2) errors in calculating COT. To improve 1), a better calculation
algorithm needs to be developed. Here, we concentrate on the
evaluation of errors 2). Errors can be minimized by prolonging the
time used for the extraction of optical flow. Results are presented
below for experiments with real images that were conducted in order
to evaluate the errors.

We assume that the available information for calculating COT is
taken from the first frame (¢ = 1) through the present frame. The
present frame shows the frame whose shape is to be reconstructed.
The same data stated in Section V are used here. Examples of
reconstructed wave shapes are given in Fig. 17. As is apparent from
Fig. 17, a flat shape for the first frame is obtained because the COT
coincides with that point, and no gradient is detected. As the number
of analyzed frames increases, however, the shape becomes clearer.
For example, the shape for frame 5 is more apparent than that for
frame 3. This means that the errors decrease as more frames are used
for the shape reconstruction.

The error in the tth frame S, is defined as

1
5= 37 L1 = 2y
g

where M is the total number of combinations of i and j, Z:; is
the Z value at coordinate (¢, j) at the ¢th frame of the reconstructed
shape by our method, and Z,; is the Z value of the actual surface
shape. The actual surface shape is calculated using the real positions
of the underwater dot pattern. As shown in Fig. 18, the error decreases
with repeated oscillation. The phenomenon of increasing error during
the first few frames can be explained as follows. The position of
points tends to oscillate; therefore, some points move in a different
direction from the COT. Where such points predominate, the error
first increases but then decreases after a long period.

The algorithm for recovery of the underwater patterns also uses
COT. Accordingly, the deformation of the recovered pattern gradually
decreases with time.

(22)

VII. CONCLUSIONS

The movement of a transparent object past a pattern distorts the
observed image of the pattern. This correspondence dealt with the
surface shape reconstruction of transparent objects from a sequence
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of distorted 2-D images. The reconstruction can be thought of as an
inverse operation of the ray-tracing technique, which is well known
in computer graphics. The proposed method can deal with objects
having the following characteristics: 1) They are transparent with a
nonunity refraction index, and 2) their surface shapes are deformed
around an average surface whose shape, in relation to time, is known.
Its originality lies in dealing with a nonrigid transparent object and in
using cues of refraction (optical law, which is the above characteristic
1)) and motion (statistical characteristics of the object, which is the
above characteristic 2)). An example of a waving water surface was
used to demonstrate the method. .
The main results of this correspodence are listed below:

1) The gradients of each point of the transparent object (for
example, water surface), which is referred to as a needle map,
can be computed from the positional relation between the
point and its COT, even if the original pattern is unknown.
The surface shape can be reconstructed by integration of this
gradient map. This has been demonstrated in experiments using
both synthesized and real images of an image behind water.

2) The original pattern can be recovered from the time series
of the distorted images. Distortion is corrected by inversely
transforming each pixel to its COT. An example of original
pattern recovery was demonstrated using a synthesized image
sequence.

3) The error caused by estimation error of the COT, even if it first
increases, decreases as time passes.

Areas for future research include improving the accuracy of optical
flow extraction, developing the case of center projection, and applying
the method to various kinds of real images.
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