@ Pergamon

Pattern Recognition, Vol. 28, No. 3, pp. 421-430, 1995
Elsevier Science Ltd

Copyright © 1995 Pattern Recognition Society
Printed in Great Britain. All rights reserved

0031 3203/95 $9.50 + .00

0031-3203(94)00113-8

PARTIAL EIGENVALUE DECOMPOSITION FOR LARGE
IMAGE SETS USING RUN-LENGTH ENCODING

JAMES B. ROSEBOROUGH and HIROSHI MURASE
NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-01, Japan

(Received 9 November 1993; in revised form 9 August 1994; received for publication 26 August 1994)

Abstract— Pattern recognition using eigenvectors is a recent active research area. Finding eigenvectors of
a large image set, however, has been considered to require too much computation to be practical. We
therefore propose a new method for reducing computation of the partial eigenvalue decomposition based
on run-length encoding. In this method, called the constant regions method, spatial encoding is used to
reduce storage and computation, then coeigenvectors are computed and later converted to eigenvectors.
For simple images, and when the number of pixels in an image i$ much larger than the number of images,
the resulting algorithm is shown to grow as the first power of the basic image dimension, rather than the
fourth power as for conventional methods. For comparison, the power method, the conjugate gradient
method, and a so-called direct method for computing the partial eigenvalue decomposition are also
presented, and recommendations are given for when each method should be used. The advantage of the
proposed method are verifted by tests in which the first several eigenvectors are computed for sets of images
having varying complexity. This algorithm is useful for a research area of pattern recognition using

eigenvectors.

Eigenvalue decomposition
recognition Sub-space methods

1. INTRODUCTION

Eigenvector analysis is important for many areas in-
cluding signal processing,' -’ image analysis,>* pattern
analysis, or character recognition.’® Especially, pattern
recognition methods using image eigenvectors, such as
face recognition using eigenfaces® or object recognition
using parametric eigenspace,”® have been a recent
active research area. An important property for image
processing applications is the ability to extract the
most important dimensions of a large sample space,
and provide a controlled way of reducing computation.
In practice, however, computing eigenvectors of high
resolution images of large sample sizes often requires
prohibitive amount of computation.

The wide variety of computational methods found
in the literature reflect the diversity of application areas
to which eigenvalue decomposition may be applied.
Among methods suitable for very large data sets, a
large .number may be considered iterative gradient
search methods.” 2 In addition, there are specialized
methods for specific problems, such as decomposition
of matrices having Toeplitz structure,*® matrices
arising in stochastic systems,"'* or adaptive methods
for use with data that arrive sequentially."> For ex-
tremely large data sets such as those arising in image
processing applications, however, the computation as
a function of data size can still be unacceptable.

We propose a method called the constant regions
method for computing the partial eigenvalue solution
which is based on spatially encoding the images, and

Run-length encoding

Image processing Character

computing the coeigenvectors as an intermediate step
rather than the eigenvectors directly. In particular we
use run-length encoding as a spatial encoding method.
By doing this the computationally expensive step in
the partial eigenvalue solution is reduced from the
fourth power of the basic image dimension to linear
for many practical problems. To achieve these reduc-
tions, the image storage requirements must be sig-
nificantly reduced by the encoding method. For binary
images and many synthesized images, this condition is
easily met. For natural images, however, such signifi-
cant reductions will not be realized in general without
introducing small approximation errors.

In the following, we first review previous methods
applicable to the present problem. Then we present
our improvements based on spatial encoding, and give
algorithms for the case of run-length encoding. We
then analyze the computational and storage require-
ments for each algorithm, and give criterion when each
should be used. Finally, we include experimental results
which demonstrate the effectiveness of the proposed
method.

2. PRESENT ALGORITHMS FOR PARTIAL
EIGENVALUE DECOMPOSITION

In this section we will present three existing methods
of computing the partial eigenvalue decomposition:
the power method, the conjugate gradient method,
and a direct method. We begin by introducing some
terminology.

421

422 J. B. ROSEBOROUGH and H. MURASE

We assume there is a set of m vectors, x,,...,X,,
representing m images of interest. We will call x; the
ith template. Each component x,...,x, of a template
x will correspond to the intensity of a pixel in the
template’s image array and n is the number of pixels
in a template image. For convenience, the templates
are combined into an n x m matrix, X, with each tem-
plate x; forming a column of X. That is,

X=[x; x,] (1)

Note that by assuming the templates are vectors, we
are not limiting ourselves to one-dimensional images,
but rather assume that a convention has been chosen
for converting data from a multidimensional array
such as an image pixel array into a one-dimensional
vector.

Since X is a linear operator, the K = rank (X) nonzero
eigenvalues of X, A,,..., A, and their associated eigen-
vectors ey,...,ex may be computed, which will satisfy
the fundamental eigenvalue relationship

ie,=Re, i=1,. K,)

where R is the square, symmetric matrix computed
from X as and its transpose, X7, as

R =XX". (3

Often, only the k <K largest eigenvalues |4,|>
[43] = --- =] 4|> 0 and their associated eigenvectors
€(,...,€ are retained to approximate image data. If
we form a n x k matrix E® from the first k eigen-
vectors,

EY=[e, ---¢,],)

then for each x; a corresponding model m® may be
computed according to

M® =[m® ... m®] = EPTX, (5)

We call m{ a kth order model of x;. It is a projection
of the vector x; into the subspace defined by the basis
vectors of E®. Approximations & to the original x;
may be recovered according to

X® = [gB ... §09] = EOpM®, (6)

The power of the eigenvalue method as it may be
applied to image processing is that the M® maximaily
represent the data X under the /2 norm. That is, E® is
an n x k matrix that minimizes the error in the approxi-
mations |[X® — X| for any | <k <K.

2.1. The power algorithm

A simple algorithm for computing eigenvalues
and their corresponding eigenvectors is the power
algorithm. In this method, an iteration is introduced
involving the matrix R that computes the largest re-
maining eigenvalue and it's eigenvector, then this
dimension is removed from R and the process is re-
peated until k pairs are found.

Suppose R is a square symmetric matrix computed

according to (3). Then in the iteration defined by,

é0: |é0|=1’ é-(l)-emem;é()

&=Re¢
A=
g

A1

N T 1ar

&, =41 Jt: > @)

the estimates 4, and &, at iteration ¢ will converge
to the largest eigenvalue A,,, and eigenvector e,,,.
Because &, must not perpendicular toe,,,,, a randomly
oriented unit vector is generally used for the initial
guess, &,. Throughout the paper, we use the nota-
tron

) »

to indicate that the steps a, and b, are to be computed
under the set of ¢ given in {c}. Thus in (7), {c} specifies
a stopping condition, with ¢ specifying a numerical
tolerance usually chosen to reflect the precision of the
computer.

Given an algorithm for finding the single largest
eigenmode, the k largest eigenmodes may be found
according to,

R, =R
7,
&)
Rs+1=Rs—zsésésT s=1,2...,k

While the power algorithm is easy to implement, the
main drawback is slow convergence under the condition
that | A;/As, | is close to 1. For practical problems this
occurs frequently so a more sophisticated algorithm is
required.

2.2. Conjugate gradient method

The conjugate gradient method for finding maximal
values of a function is applied to the present problem
by defining a suitable scalar function. The function to
be maximized is the Raleigh quotient F(¢) defined
as

F@®) = (E'Re) (10)

It can easily be shown using (2) that when F(8) takes
on a maximum value, F(&) will be equal to 4_,, and &
will be colinear with e,,,.

We now state the conjugate gradient algorithm for
finding the largest eigenvalue of R. More detailed
explanations can be found in references (9) and (10).
In the following, g, is the gradient of F(&) evaluated at
€=¢&,h, is a direction of search, d, is the distance along
the search direction that minimizes the Raleigh coeffi-
cient, and the algorithm is reset every T steps,

Partial eigenvalue decomposition 423

o>

. AT
o' €0€max # 0

& =Reé,

ATD A AT Ar
~ é Re, &¢e
h=F@)=-1"="—

etet |e!|

2, 5.
4 (e;—j'tet)
|2

18
g (=jTj=012...
2
| . h, , t#jT
(g
a, = (hrTth)(étTht) - (é;rRht)(hrThr)
b, = (h/Rh,)(@&&) — (&/R&,)(h/h,)
¢, =(&/Rh,)(&]¢,) — (&/Ré)(&'h,)
Qe — b, +./b? —4da,,

t
2a,

g+

el
47 e
e (1n

etnnal'

&.,,=¢+dh,

é = Iétnnal
As before &, must be non-zero, and not perpendicular
to €, The value ¢ is a stopping tolerance. The integer
j is a dummy variable used to reset the algorithm
every T steps. In this paper, we used T = 5. Note that
in this case, the final estimate € must be rescaled to be
a unit vector after the convergence criterion has been
met. Successive eigenvalues are found in the manner
of (9).

This algorithm performs well and grows approxi-
mately linearly with the number of elements in R for
large n. However, the initial computation of R varies
with the square of n, so computing R becomes the
limiting step for many practical problems.

2.3. Eigenvalue determination without computing R

The previous algorithms can be modified to compute
the partial eigenvalue decomposition without explicit
computation of the matrix R. In this case the step
€ = Ré, which occurs in both the power algorithm and
conjugate gradient algorithm is replaced by the two
steps,1®

& =Xe, (12)
& =X"e .
In this case, successive eigenvectors must be removed
directly from a copy of the data matrix X, rather than
from R, since the latter is not computed. This may be
done according to

(xi)s+1 Zésé;r(xi)s i= 17'-'9m' (13)

We call the algorithm resulting from the substitution
of (12) and (13) into the conjugate gradient algorithm
the implicit R, or IR algorithm.

While the conjugate gradient algorithm almost always
improves the computational speed over the power

method, the substitution given by (12) will not always
increase speed. If many eigenvalues are required, or m
is very much larger than n, for example, the original
conjugate gradient algorithm will be faster.

2.4. The singular value decomposition algorithm
Although R is an n x n matrix, the matrix
R=X"X (14)

is m x m and is much smaller in practical problems.
The matrix R has eigenvalues 4,,..., Ax and associated
eigenvectors &, ..., & related to those of R by

jLi=f.‘ (15)
eizj_i_l/ZXéi i=1,...,K.

We call & a coeigenvector and note that it is of length
m, whereas the eigenvector e is of length n. When m is
much smaller than », using the above relations to
compute the eigenstructure can greatly reduce the
computational load. The coeigenvectors’ elements are
later used as weights for computing the true eigen-
vectors as linear combinations of the input images.
The relation (15) was developed within the framework
of the singular value decomposition theory,* ! so this
approach of first computing the coeigenvectors and
then using them to compute the eigenvectors is referred
to as the singular value decomposition (SVD) algorithm.
This method performs well for some problems, but the
limiting step with many large data sets is still the
computation of R.

Tradeoffs among the various algorithms are taken
up in more detail in Section 4.

3. EIGENVALUE DECOMPOSITION BASED
ON SPATIAL ENCODING

The natural redundancy in images can be exploited
to speed up the computation, often dramatically,
through a spatial encoding scheme, such as run-length
encoding, a quad-tree representation, or representation
by polygon vertices. The run-length encoding results
in simple algorithms and is suitable for natural as well
as synthetic images, so we focus on that method in this
paper. A general reference on image encoding methods
is Rosenfeld and Kak.\'®

We basically enhanced the SVD method. To see how
encoding reduces computation, we note that while R
IS an n X n matrix, the matrix

R=X"X (16)
is m x m, and has eigenvalues 7, ..., i¢ and associated
eigenvectors €;,..., & related to those of R by,

W=k] (17)
e,=4'7Xg | i=1,... K

The relation (17) comes from singular value decom-
position.!? It can yield good performance for some
problem types, but the limiting step becomes the com-
putation of R for many large problems.

424

The importance of (16) lies in the fact that the ele-
ments 7;; of the matrix R are computed according to

Tx;. (18)

That is, 7;; is the dot product between two images, x;
and x;. This means that by using suitable algorithms
for the computation of the dot products in (18) which
act directly on spatially encoded data, computations
can be substantially reduced. Subsequently, we present
the data structures and algorithms to achieve these
reductions for the case of run-length encoding.

Fij=X

3.1. Run-length encoding of images

We now introduce notation for run-length encoding
ofimages. By run-length encoding, we mean represent-
ing an image x by two sequences, namely, a sequence
of run lengths, {u, }, and values, {y,}, defined recursively
as

W, = max {l:xa‘(uk)+l = Xowg+2 = '”xa(uk)+i}}
= xa'(uk)+ 1

ki k=1, o(w)<n (19)

We call the ordered pair (u;, x;) the ith run-length en-
coded cell of x, or when the context is clear the ith cell.
The notation (1,) is used to refer to the sum of the first
k — 1 run lengths, or 0 if k is 1, that is

k-1
o)=Y u (20)
i=1
and so refers to the number of components of x already
encoded before the kth cell. In addition, we will use the
notation c, to refer to the cell count in the run-length
encoded image of x.

3.2. Dot product of two run-length encoded images

The dot product of two run-length encoded images
may be computed directly from the run-length encoded
values to reduce the computation of R in (16). To do
so, another run-length encoded sequence is generated
representing the partial products of the two images.

X
y

&= §,=0 §3=1 §4=-1
. soo

X3=

J. B. ROSEBOROUGH and H. MURASE

Assume image x is encoded by {(u,y)} image y is
encoded by {(v,%)}, and the sequence of run-length
encoded partial products is given by {(w,{)}. The
sequences have numbers of cells equal to c,, ¢, and c,,
respectively. To perform the computation, we introduce
iy and j; which are indices into the sequences {y} and
{¥}, respectively, and I, and m, which give the number
of components yet to be used in the partial product
computations for the ith and jth cell respectively.
Then the dot product x"y may be computed as follows,

wo = min(uy, vo)

lp=jo=1
lo=1u,
Mo =0,

w, = min(/,, m,) -]

.sals— s
(is+lsls+1)={(l W)

(is+ l’uis+1) Ws= ls

w, <l

(js?ms - Ws)
(js + l’ujs+1) We= my

W, <

(js+17ms+1)={

(= Xi,!/’js J

st s>1,0(w)<n

o

Ws‘ss'
1

xTy=

s

@1

This is illustrated in Fig. 1. There, it can be seen that
the number of cells in the partial product sequence is
at most the sum of the number of cells in the component
sequences, thatis, ¢, < c, + ¢,. The computation saved
over non-run-length encoded methods is therefore
directly related to the reduction in storage achieved by
run-length encoding.

3.3. Computation of eigenvectors from co-eigenvectors

Once the elements of the matrix R are computed,
the previous algorithms can be used to find the coeigen-
vectors, E®. For example, the conjugate gradient
method was used for this stage in our experiments.
Then, these are converted to eigenvectors according to

X4=_1

f— % — g ey ey —

Fig. 1. Schematic diagram of the computation of a dot product from two run-length encoded images. Here,
grey represents the level 0, black — 1, and white 1.

Partial eigenvalue decomposition

(17). In this step as well, the run-length encoding can
be used to save computation by multiplying a value
only once, then summing repeatedly.

If the coeigenvector & is to be converted to the
eigenvector e by (17), the computation may be expressed
as

m
€, = /‘,_1/’2 Z leéj
i=1

m
S —1)2 S
e=e¢ 1 +A VY (xjj—x4-1))8 i=2,...,n
j=1

(22)

If the templates are substantially reduced by run-length
encoding, than many of the differences x;; — x;_); in
will be equal to zero, so the computations can be
simplified.

We have presented the constant regions method for
the specific case of run-length encoding. We call the
algorithm consisting of the run-length encoded algo-
rithms presented in this section, and the conjugate
gradient algorithm to compute E from R the run-length
encoded or RLE algorithm.

4. ANALYSIS

In this section, we compare the theoretical per-
formance of the algorithms that have been presented
and indicate the conditions under which each will be
preferred over the others. Figure 2 shows the block
structure of each algorithm. Here blocks represent
operations on data, and arrows represent data of a
specific type being passed from one process to another.

425

From these diagrams, the storage and computation
requirements may be readily determined.

4.1. Problem characteristic parameters

To review, the problem consists of m templates each
of size n, and the k largest eigenvectors are to be
computed. The value m is called the sample size, n is
called the data size, and together they describe the
basic problem size. The value k is also specified by the
user based on the problem requirements, and will
influence the decision as to which algorithm is pre-
ferred.

In Section 3.2, we said that the reduction in com-
putation is related to the amount of data reduction so
it will also depend on the image material. We introduce
a data reduction factor f, for template x, and average
data reduction factor f for the set of templates X to
describe these dependencies. These are defined as

CX
fxE;lﬁ (23)
_ 1=
f=2 fs 24
m;=1

where ¢, is the cell count of Section 3.2.

The average data reduction factor cannot be reliably
known before the data are encoded, so for our purposes
we estimate this number based on knowledge about
the application. For example, consider the template
shown in Fig. 3. Under run-length encoding, the first
several rows of pixels, which are all white, will be
condensed into a single run-length encoded cell. Sub-
sequent rows will be split into between two and six (for

X R

Compute
—_—

E

[Eigenvectors
—

R

¢

of R

(a) Power method, conjugate gradient method

i E
X ExAgenvectOArS fromAX | E_
e er e/
P x
(b) Implicit~-R method
X Compute| R _ [Eigenvectors| E [Eigenvectors| E
R o of R /'4 E from E |
(c) Singular value decomposition method
X _ |[Run-length] {{u, X)} [Compute| R _ [Eigenvectors| E _ [Eigenvectors] E
—_— . - - SR Y
Encode R of R E from E

S

(d) Constant regions method using run-length encoding

Fig. 2. Data flow diagrams by algorithm. Arrows represent data and blocks represent operations on data.

426 J. B. ROSEBOROUGH and H. MURASE

jp+l

Fig. 3. Example template showing data encoding method.
Rows near the jth row require 6 run-length encoded cells to
be represented.

the example shown) cells per row, even if the number
of rows is doubled or halved. Hence the cell count ¢,
will be approximately linear with the resolution of a
single image dimension, that is ¢, ~ f,n'/?. Defined in
this way, f, will is largely independent of the image
resolution, and serves to characterize the complexity
of the image.

Finally, we use the value 7 to refer to the average
numbser of iterations per eigenvector to meet the con-

vergence criterion. As with f, this can only be estimated.
Without attempting to analyze this further, we note
that for a variety of problem types and sizes we have
used, the conjugate gradient algorithm required be-
tween 10 and 15 iterations to converge independent of
the eigenvalues and specific problems.

4.2. Computation and storage requirements

The computation and storage requirements for the
algorithms as a function of the problem parameters of
Part A of this section are summarized in Table 1 as
functions of the problem parameters n, m, k, f and 7.
Computation requirements refer to approximate num-
ber of floating point multiplications that must be
performed to execute that algorithm, and storage
requirements refers to the sum of the storage require-
ments for each type of data produced by the algo-
rithmic elements.

From Table 1, it can be seen that for high-resolution
problems, that is n > m >k, the ‘run-length encoded
algorithm will be superior to the others. By way of
specific example, suppose 200 templates of size 128 x
128 and similar in complexity to Fig. 3 are used, and
10 eigenvectors are desired. For this case n = 16384,
m =200 and k = 10, and is typical of the applications
we are using. Estimating f~ 6 and 7~ 12, the number
of multiplications for the classical and run-length en-
coded methods are 3.01 x 10'° and 8.49 x 107, re-
spectively. The numbers of storage locations required
are 1.38 x 108 and 4.30 x 10°, respectively. Thus com-
putation and storage are reduced two orders of magni-
tude by run-length encoding over the power method.

Table 1. Expected computation and storage requirements by (a) algorithmic sub-process, and (b) complete
algorithm

(a) By algorithmic subcomponent

Algorithm Computational requirements
Step CG IR SVD RLE Storage Multiplications
Retain X . . . nm —
Encode X . Sntm —
R=XX" . n? 1/2n%*m
R=X"X ° m? 1/2nm?
R({(u}, 2)m}) . m? 1/2fn"2m?
eig(R) . n kin?
eig(R) 'y ° m kim?
eig(X, X") ° m 2kinm
é(e, X) . — knm
&, {(upxp}) . — kfnt?m
Retain E kn —

(b) By complete algorithm

Algorithm Storage Multiplications
Conjugate gradient nn+m+1)+kn n*(im + ki)
Implicit-R nim+1)+kn 2kinm

Singular value decomposition
Run-length encoded

mn+m+ 1)+ kn
m(fn'? +m+1)+kn

nm(im + k) + kim?
n'2m& fm + k) + kim?

Partial eigenvalue decomposition 427

4.3. Regions of dominance for each algorithm

The results of the previous subsection can be com-
bined into a plot showing regions of dominance for
each algorithm as a function of the problem size param-
eters n and m. This has been done and is presented in
Fig. 4. This figure has been drawn for specific values
of 7,7, and k, but asymptotes and intercepts have been
indicated to illustrate the dependencies on these param-
eters. Note that in Fig. 4(b), although the SVD algorithm
appears to be of more use than the RLE algorithm, for

square images the assumption that £ =100 implies
that n greater than 1000, so in practice, RLE will
always dominate SVD.

4.4. Summary of comparison among methods

We briefly summarize the results of this section
regarding the applicability of the various algorithms
under various conditions.

e For large sample size n compared with the data
size m, run-length encoding should be used.

m
Implicit-R
Conjugate
gradient
Constant regions method using
run-length encoding
=, 1 4 5 6
n=mjy 10 n=}‘2 10 10 10 10
= n
(a) Simple images (f =6)
n=4ki
m 10
]
10 Implicit-R
Conjugate
gradient
10* 5
m=1k1n*4
f
10°
2
10 Constant
Singular regions
value method
10 decomposition (RLE)
] 2 2 s 6
n=mj 10 10 10 n=F 10 10
n

(b) Complex images (f=100)

Fig. 4. Tradeoffs among algorithms and regions of applicability for the case of (a) simple images (f=6,
7= 12, k = 20), and (b) complex images (f = 100, 7= 12, k = 20).

428 J. B. ROSEBOROUGH and H. MURASE

e For large data size m compared with the sample
size n, the normal conjugate gradient method is pre-
ferred.

e For m and n approximately equal, and as image
complexity increases,

~— very small number k of eigenvectors is desired,
the implicit-R is preferred.

— moderate or large number k of eigenvectors is
desired, run-length encoding is preferred.

More precise tradeoffs, if necessary, can be computed
according to Fig. 4. If desired, software can be pro-
grammed to switch automatically among the algor-
ithms based on the problem specifications at run time.

5. EXPERIMENTAL RESULTS

To test the methods in a realistic setting, eigen-
vectors were computed for four sets of data of varying
complexity. We present the results of these tests in this
section.

We used three subsets of the Japanese daily use
Kanji having small, medium, or large numbers of strokes
to test the algorithms for a variety of image complexities.
In addition, we used a set of natural images. Figure 5
shows a single sample image from each of these four
image sets.

In all cases, a sample size m = 100 was used, and the
image resolution was varied for each data set. We
assumed that k = 20 eigenvectors would be sufficient
to characterize the data. We then computed the first
k =20 eigenvectors for each image set using the
methods presented in this paper. Figure 6 shows a
sample of the computed eigenvectors for the second set
of images, characters having a moderate number of
strokes. As none of the methods rely on approximation
other than the fact that they are all iterative methods,
the computed eigenvectors for all methods did not
differ significantly.

We recorded the storage requirements and com-
puting time for the various problem types and image
resolutions, and the results are summarized in Table 2.
The power method, because it is almost always inferior
to the conjugate gradient method, was not analyzed.

In Table 2 we see that the results of the analytical
section are confirmed. Namely, for the run-length en-

A, =331 A,=9.4

A | |

(a) Simple images

o

(b) Moderately complex images

-~

N2 AR

(d) Natural images

Fig. 5. Sample of images having varying complexity used to
test algorithms.

A=44 A, =36

Fig. 6. Sample of computed eigenvectors for the test set of moderately complex character images.

Partial eigenvalue decomposition

Table 2. Measured storage locations (processor time) by algorithm, resolution, and image complexity

429

CG SVD IR RLE
Size Type (Kb) (s) (Kb) s (Kb) (s) (Kb) (s)
Simple 8813 (1978) 1736 (148) 426 (553) 135 (19.3)
n=1024 Moderate 8813 (2299) 1736 (152) 426 (553) 247 (33)
(32 x 32) Complex 8813 (2552) 1736 (153) 426 (553) 321 (42)
Natural 8813 (2147) 1736 (151) 426 (464) 1283 (93)
Simple X X 6702 (583) 1703 (4034) 255 (45)
n = 4096 Moderate X X 6702 (583) 1703 (4034) 486 (78)
(64 x 64) Complex X X 6702 (583) 1703 (4034) 649 (90)
Natural X X 6702 (576) 1703 (2156) 4791 (343)
Simple x X X X X X 2379 (466)
n=65536 Moderate X X X X X X 3051 (549)
(256 x 256) Complex X X X X X X 3735 (625)
Natural X X X X X X X X

coded method, the storage requirements and com-
putations are reduced, especially for large problems
such as the complex Kanji problem. In addition, it can
be seen that computation and storage requirements
are dependent on image complexity, and are approxi-
mately proportional to the basic image resolution n'/2
for the run-length encoded algorithm, as expected.

In some cases, we exceeded the memory capacity of
our workstation (approximately 8 megabytes of avail-
able virtual memory) and were unable to compute the
partial decomposition. These cases have been indicated
by an “X” in Table 2. Thus the run-length encoding
method demonstrates clear advantages in that other-
wise infeasible problems have been made feasible. Note
that no algorithm was able to handle the set of natural
images at the highest resolution.

6. DISCUSSION

In Section 3, we presented an algorithm based
on run-length encoding, but other spatial encoding
methods could be used with similar results. For
example, reduction by quad-tree representation'!”
could also be used. In the case of images composed of
discrete patches with smooth boundaries, both methods
will have storage sizes and computation requirements
which are linear with the basic image resolution in the
limit as this dimension is increased. For synthesized
tmages of consisting only of polygons, a resolution
independent eigenvectors also consisting of polygons
may be computed.

Perhaps the biggest drawback of the method is its
failure to significantly improve computation for grey
scale images of natural scenes. However, in our tests
run-length encoding did improve performance for these
cases as well. The exact run-length encoding according
to Section 3 will seldom reduce the storage for natural
images significantly, and it is possible that it may
increase it. This is because adjacent pixels have ap-
proximate, rather than exact correspondence, so the
encoded run-lengths are usually one or a few pixels.
By allowing small approximation errors in the encoding
process to increase run lengths, the run-length encoding

method as given above can again be used to realize
significant gains in speed for small reductions in
accuracy.

Specifically, when encoding, a tolerance value can
be set representing the largest grey scale error allow-
able. Data can be collected in a run-length encoded cell
until the range of values in the cell exceeds the tolerance.
The value of the cell is determined from the average of
components within the cell. This will bound the overall
error to a predetermined amount, and reduce storage
and computation. Note that because approximation
errors are limited in the /? norm, error in the computed
eigenvectors will also be limited to within predeter-
mined bounds.

Alternatively, the histogram of the image can be
computed, and divided into h grey level groups of
equal numbers. The image is then discretized according
to these values, using a closest-level scheme. This will
assure that the run-length set is good with respect to
the I norm. We did not examine the approximate
methods in our approach, but rather restricted our
study to cases where exact eigenvectors are computed.

Wallace!'® has developed an automatic clustering
algorithm which automatically produces an encoded
image with the shortest description length. Because
computation is directly related to the storage size, such
a method may be useful in combination with our
method for handling natural images.

7. CONCLUSIONS

We have shown that by introducing spatial encoding
and computing coeigenvalues rather than eigenvalues,
the computational and storage requirements can be
severely reduced for an important class of problems
in image processing, namely large data sizes and
moderately complex images. In such cases, the com-
putation can be effectively reduced from the fourth
power of the basic image resolution to the first power
for images containing large, separable regions of uni-
form intensity. The method uses the natural redun-
dancy occurring in images to reduce the number of
repeated computations that must be performed.

430 J. B. ROSEBOROUGH and H. MURASE

We analyzed five algorithms for computation and
storage requirements, and gave tradeoffs based on
problem size for choosing among them. The run-length
encoding methods appear most useful for very large
problems, where high image resolution is desired, and
fairly large sets of templates will be used.

We also demonstrated the effectiveness of the method
on a variety of data. We computed the partial eigen-
value reduction of the subsets of the daily use Japanese
Kanji characters of varying complexity and a set of
natural images. Computation and storage requirements
were reduced by the run-length encoded method in all
cases examined, and the characteristic of linearly in-
creasing computation based on the basic image re-
solution was confirmed. Some very large problems
were only computable using our method. Though the
method loses some of its power for natural images, in
our experiments it still improved speed and storage
over the other methods.

REFERENCES

1. D. W. Tufts and C. D. Melissinos, Simple, effective com-
putation of principle eigenvectors and their eigenvalues
and application to high resolution of frequencies, [EEE
Transactions of Acoustic, Speech, and Signal Processing
ASSP-34(5), 1046—-1053 (October 1986).

2. H. Messer and Y. Rockah, On the eigenstructure of the
signal-only tempo-spatial covariance matrix of broad-
band sources using a circular array, IEEE Transactions
of Acoustic, Speech, and Signal Processing 38(3), 557-559
(March 1990).

3. S. Umeyama, An eigendecomposition approach to
weighted graph matching problems, IEEE Transactions
on Pattern Analysis and Machine Intelligence 10(5), 695-
703 (September 1988).

4. J. B. Burl, Estimating the basis functions of the Karhunen—
Loeve transform, I EEE Transactions of Acoustic, Speech,
and Signal Processing 37(1), 99-105 (January 1989).

5. H. Murase, F. Kimura, M. Yoshimura and Y. Miyaka,
An improvement of the autocorrelation matrix in the
pattern matching method and its application to hand-

10.

11.

13.

14.

15.

16.

18.

printed ‘HIRIGANA'’ recognition, Trans. IECE J64-D(3),
267-283 (1981).

. M. Turk and A. Pentland, Face recognition using eigen-

faces, Proc. of IEEE Conference on Computer Vision and
Pattern Recognition 586-591 (June 1991).

. H. Murase and S. Nayar, Learning object models from

apparance, AAAI-93, Washington D.C., pp. 836-843 (July
1993).

. H. Murase and S. Nayar, Illumination planning for object

recognition in structured environments, [EEE Conference
on Computer Vision and Pattern Recognition 31-38 (June
1994).

. X.Yang, T.K. Sarkar and E. Arvas, A survey of conjugate

gradient algorithms for solution of extreme eigen-problems
of a symmetric matrix, I[EEE Transactions of Acoustic,
Speech, and Signal Processing 37(10), 1550-1555 (October
1989).

R. Haimi-Cohen and A. Cohen, Gradient-type algorithms
for partial singular value decomposition, IEEE Tran-
sactions on Pattern Analysis and Machine Intelligence
PAMI-9(1) (January 1987).

H. Murakami and V. Kumar, Efficient calculation of
primary images from a set of images, IEEE Transactions
on Pattern Analysis and Machiue Intelligence PAMI-
4(5), 511-515 (September 1982).

. S. Shlien, A method for computing the partial singular

value decomposition, IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-4(6), 671-676
(November 1982).

Y. H. Hu and S. Y. Kung, Toeplitz eigensystem solver,
IEEE Transactions of Acoustic, Speech, and Signal Pro-
cessing ASSP-33(4), 1264-1271 (October 1985).

A. K. Jain, A fast Karhunen-Loeve transform for a class
of random processes, IEEE Transactions of Communi-
cations 1023-1029 (September 1976).

J. Karhunen, Adaptive algorithms for estimating eigen-
vectors of correlation type matrices, in Proc. 1984 IEEE
Int. Conf., Acoust., Speech, Signal Processing San Diego,
California, pp. 14.7.1-14.7.4 (March 1984).

A Rosenfeld and A. C. Kak, Digital Picture Processing.
Academic Press, New York (1976).

. H. Samet, Region representation: quadtrees from bound-

ary codes, Comm. ACM 23, 3, 163-170 (March 1980).

R. S. Wallace and Y. Suenaga, Color face image seg-
mentation using MDL clustering, 1990 Spring National
Convention Record, the Institute of Electronics, Information
and Communication Engineers Tokyo (March 1990).

About the Author —HIROSHI MURASE received his B.E., M.E. and Ph.D. degrees in electrical engineering
from the University of Nagoya, Japan, in 1978, 1980 and 1987, respectively. From 1980 to the present, he
has been engaged in pattern recognition, and character recognition at Nippon Telegraph and Telephone
Corporation (NTT). From 1992 to 1993, he was a visiting research scientist at Columbia University in New
York. He is presently a senior research scientist in NTT Basic Research Laboratories, and a distinguished
technical member in NTT. His current research interests lie in the areas of computer vision, pattern
recognition and human visual perception. He was awarded the best paper at the 1994 IEEE conference on
Computer Vision and Pattern Recognition. He is a member of the IEEE, the IEICE Japan, and the

Audio-Visual Information Research Group of Japan.

About the Author—JAMES B. ROSEBOROUGH was born in Wheaton, Illinois on 11 January 1960. He
received the B.S.M.E. degree in 1982 from Duke University, and the S.M. degree in mechanical engineering
and Ph.D. degree in man—-machine systems from M.LT. in 1984 and 1988, respectively. He was a researcher
in NTT Basic Research Laboratories from 1989 to 1990, where he was working on computer vision. He is

now working for GO corporation.

