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Abstract

We propose a novel method for unsupervised face recognition from time-varying sequences of face images obtained in
real-world environments. The method utilizes the higher level of sensory variation contained in the input image sequences
to autonomously organize the data in an incrementally built graph structure, without relying on category-specific information
provided in advance. This is achieved by “chaining” together similar views across the spatio-temporal representations of the
face sequences in image space by two types of connecting edges depending on local measures of similarity. Experiments with
real-world data gathered over a period of several months and including both frontal and side-view faces from 17 different
subjects were used to test the method, achieving correct self-organization rate of 88.6%. The proposed method can be used
in video surveillance systems or for content-based information retrieval. © 2002 Pattern Recognition Society. Published by

Elsevier Science Ltd. All rights reserved.

Keywords: Face recognition; Unsupervised incremental learning; Time-varying image sequences; Video surveillance

1. Introduction

In recent years automated face recognition has attracted a
lot of attention. This seems to be motivated not only by sci-
entific curiosity, but also by the numerous potential applica-
tions stemming from the fact that faces represent natural in-
terfaces for humans, and face recognition is central to human
communication. However, in spite of the extensive research
conducted in this area during the last several decades (see
Refs. [1-4] for surveys), face recognition still remains a do-
main in which humans significantly outperform computers,
especially in real-time, unconstrained and unpredictable en-
vironments. Here we argue that some of the reasons for this
situation, together with hints for the answers, might be found
by investigating some of the discrepancies between the way
humans learn faces and the way most computer-based face
recognition procedures operate:

(a) Humans learn by interacting directly with the sensory
input from their environment. Category labels, like human
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names in the case of face recognition, are not essential for
discrimination in the learning process and are used just for
convenience after the faces have already been learnt, based
on the internal characteristics of the sensory input itself
(unsupervised learning), rather than on any category-specific
information accompanying it in a supervised manner. This
is in contrast to the way most computer-based face recog-
nition procedures operate. Computers are usually provided
with input, which has been segmented and classified in
advance (supervised learning) by human teachers, and as a
result of this might be biased by their limited understanding
of the complex real-world environment;

(b) Biological learning is incremental in nature, i.e. new
categories can be learnt and added to those already in ex-
istence, without the need to “relearn” everything anew, or
to represent the new categories with a restricted pre-defined
set of features, which in the case of computer learning are
either designed by humans or automatically selected to rep-
resent the available data in some optimal way. The number
of different categories to be learnt is not fixed and known in
advance—the learning system must be open for new addi-
tions at any time;

(c) Automatic face recognition is difficult because
different people’s faces observed in the same conditions
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(1llumination, view angle, size, etc.) look more similar to
each other than the same person’s face observed in different
conditions (e.g. in frontal and side view; under extreme
illumination conditions; occluded, etc.). One approach to
solve this problem is to find features invariant under dif-
ferent conditions, but this has proven to be difficult. It
might be possible that biological systems use a different
approach—to learn from time-sequential input, in the form
of temporally-constrained continuous sensory streams, con-
taining the whole spectrum of variations in illumination,
viewing angles and object sizes, which everyday life pro-
vides. Again, in contrast to this, computers typically are
trained with few isolated samples from a large set of dif-
ferent face categories, taken in restricted environmental
conditions.

Although some rescarchers have already pointed out the
need for incremental and unsupervised self-organization of
the internal state of the learning system Refs. [5-7], see
also Ref. [8] for a relevant discussion on the differences be-
tween human and machine learning and the need for “more
cognitive learning”), or use of time-sequential data [9], a
method for face recognition which takes into consideration
all of the concerns mentioned above and performs reason-
ably well on real-world data has not been demonstrated yet,
to our knowledge.

In this paper we propose a new method for unsupervised
face recognition from video sequences of time-varying
facial images, inspired by observations (a)—(c) above.
The method utilizes the higher level of sensory variation
contained in the input image sequences to autonomously
organize the data in an incrementally built graph structure,
without relying on category-specific information provided
in advance. This is achieved by “chaining” together asso-
ciations (similar views) across the spatio-temporal repre-
sentations of the face sequences in image space, by two
types of connecting edges depending on local measures
of similarity. Several experiments, using data obtained in
real-world conditions, were conducted in order to evaluate
the performance of the proposed method, and encouraging
results were observed. Expected areas of application of this
method include visitor identification in surveillance Sys-
tems, content-based face retrieval/annotation in multimedia
applications, efc.

2. Learning by associative chaining

The purpose of the learning algorithm introduced here is
to group a set of unlabeled face image sequences, which
could be pre-stored as a database (batch mode), or obtained
in a sequential manner in the order they become available
from an input device (incremental mode). As already men-
tioned, this has to be done without using any category infor-
mation provided in advance, i.e. some clustering technique
(e.g. see Refs. [10-12)) has to be utilized. Our task is fur-

ther complicated by the following requirements: (a) gener-
ally, the number of face categories is not known in advance
and newly available categories have to be accounted for in
a non-destructive manner; (b) the different categories are
not represented uniformly, some might be under-represented
and some over-represented; (c) in sample space, the face
sequences for the different face categories form non-linear
manifolds with complex structure, for which intra-class dis-
tances can take higher values than inter-class distances. The
above-mentioned characteristics of the problem preclude
the possibility of using some of the popular clustering ap-
proaches, and this has motivated us to propose the current
method.

The clustering algorithm proposed here, which we call
associative chaining (AC), has been implemented as the
core part of a fully automatic system for face recognition
from image sequences, which operates in several stages. The
role of the first, preprocessing stage, is to automatically ex-
tract and normalize the face area of the subjects appearing
in video sequences containing dynamic scenes of moving
people, and provide them as an input to the next stage, in
the form of time-segmented face image sequences. It is as-
sumed that the face of each individual appearing in a scene
can be tracked online, and as a result of the tracking and
face-extraction process (a simplified scenario described in
Section 2.1), a separate face-only image sequence can be
produced for the time interval from each individual’s ap-
pearance in the scene to his/her disappearance. In the learn-
ing stage, the associative chaining algorithm is run on the
accumulated face-only image sequences in order to organize
them into category groups, i.e. to partition the input sample
space into face clusters, without using category-specific in-
formation. The learning process can operate either in batch
mode or in incremental mode, depending on the require-
ments of the concrete application. First, the batch version
of the AC algorithm will be introduced in Sections 2.2 and
2.3, from which will be derived the incremental version in
Section 2.4. Online face recognition/verification, which in
the frame of our system can be viewed as instances of in-
cremental node addition, will also be treated in Section 2.4.

2.1. Preprocessing of the input

Although the concrete implementation of this part of the
system is not essential for the operation of the learning al-
gorithm, which is our major concern in this paper, still some
procedure for automatic extraction of faces (or, alternatively,
other objects of interest) from image sequences is needed,
to provide the necessary input data. All that is required from
the preprocessing module is to obtain somehow image se-
quences of the moving objects of interest and to guarantee
that cach separate image sequence belongs to one and the
same category, i.c. objects from different categories would
not appear in the same sequence. This is a reasonable as-
sumption, having in mind that in the 3D world we occupy, it
is unlikely that a certain person’s face would suddenly turn
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Fig. 1. An example of the original face image sequence (temporally
subsampled ) together with the corresponding normalized face-only
sequence cxtracted from it.

into someone else’s face. The input data which we used to
test our system were obtained under the following experi-
mental setting. A video camera was fixed in a constant posi-
tion. continuously monitoring the scene in front of it. Each of
the subjects enters the scene (one at a time), walks towards
the camera and finally exits the scene passing near the cam-
era (see Fig. 1 for a typical image sequence). The following
algorithm was used to extract face-only image sequences
from the continuous input stream. After the detection of a
subject entcring the scene, and until that subject exits the
scene, the images taken by the camera are subtracted from
the most recently saved background-only image (which is
continuously updated in the absence of foreground action),
and thresholded to obtain the binary images B(x, y), where x
and y are image coordinates. A multi-resolution image pyra-
mid B'(x, v} is formed from B(x, y), and the binary silhou-
ettes S7(x, ¥) of the subject are extracted at cach resolution
level r of the pyramid. Next, the x- and y-histograms #/ "(x)
and H'(y) are calculated from $'(x, y), analyzed in order
to find the shoulder line of the silhouette, and then the face
area frame coordinates are determined from the assumption
that the head is the blob above the shoulder line. After the
face coordinates are calculated at each level of the resolution

pyramid, their median value is taken as the final result. Us-
ing this information, the face area is extracted from the orig-
inal image and normalized into an 18 X 22 pixels face-only
image. The faces obtained for the time period between the
subject’s entering and leaving the scene are stacked into a
single face-only image sequence, which will be input to the
next stage of the system for learning it.

Obviously, this simple face detection procedure would
not work under more complicated scenarios in which the as-
sumptions above are not satisfied (c.g. multiple users partly
occluding each other, non-static backgrounds, etc.), but it
proved sufficient in our case to collect the input data nec-
essary to test the learning algorithm. The resulting face ex-
traction was not as precise as would have been achieved by
manual face extraction (an unattractive alternative, having
in mind that tens of thousands of faces had to be processed
for the experiments reported in Section 3), and occasionally
produced faces which were misaligned, wrongly cropped
and of slightly different scale, as can be seen by careful in-
spection of the face images in Figs. 1-3, for example, but
as a whole the results seemed acceptable, and additionally
had the effect of testing the algorithm in the presence of
noisy data. Face detection/tracking is a very rapidly devel-
oping area (see, for example Refs. [13-16]), and we believe
that employing a more reliable preprocessor than the one we
have used would lead to better performance of the learning
module, too, but still a perfect face detection and tracking
under real-world conditions might not be easily achievable,
and therefore the learning algorithm should be able to tol-
erate significant amounts of noise.

2.2. Minimal spanning tree { MST} formation

In order to organize the set of face image sequences into
clusters, first it is necessary to define a suitable measure for
the distance between two image sequences. Let @, 7,0
and F®)(i, j, 1) be two face image sequences, where a and b
are sequence indexes (a,b : 1...N), i and j are image co-
ordinates, and 7 is image frame number (different sequences
might have different length). For all available face image
sequences F'"(i, j,t) compute the dissimilarity (distance)
matrices M“? whose clements m“?{x, y} represent the
dissimilarity (distance) between the xth face and yth face,
respectively, in F\(i, j,x) and FO@, j, y):

m O (x, v) = dist(F, j,x), FOLj, )
= TP~ FOG AL ()

i

where Ts(x) is a threshold function with suitable thresh-
old parameter 4. In the face distance measure (1), which
was proposed in Ref. [17], the dissimilarity between two
grayscale face images is computed by subtracting them from
each other and counting the number of pixel positions which
differ by more than . Although alternative measures for
face dissimilarity might be used, we have chosen Eq. (1)
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Fig. 2. An example of a graph G(C,E,T’, p) obtained during the MST formation stage. Different letters are used for the nodes corresponding
to face image sequences from different categories, and the numbers after the letters represent the sequence index. Edge lengths are also
shown near the edges. See also Fig. 7 for several examples of the face sequences corresponding to the nodes above.
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Fig. 3. In the initial MST graph, part of which is shown here, the face clusters for two subjects, subject S and subject K, are connected
together by a spurious association link between nodes S7 and K14. The split procedure breaks that link after finding that F(S7,K12,K14)
in Eq. (6) has a positive value and applying Eqs. (7)—(10).
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because it is computationally inexpensive and performs rea-
sonably well in our case, where the faces can be easily nor-
malized and each frame sequence contains a multitude of
face templates including gradual variation in position, view-
ing angle, illumination, etc. More elaborate face distance
measures might be used if processing time is not a problem,
potentially leading to better recognition results. Conversely,
if used in relation to different face-metric spaces, the present
method can provide information about their efficacy, even
in the cases when category-specific information might not
be readily available.

From the distance matrices M“? is calculated the prox-
imity matrix P, whose elements p{a, b} define the minimal
distance between any two face sequences F @ and F®,

p{a. b} =mindist(F(i, j,x), F"(i, }, )
Xy

(a.b)

- n}l‘nm (x, y), (2)
so that each face sequence is represented by a row in the sym-
metric P. Here also, alternative between-sequence distance
measures can be used (e.g. some variant of the Hausdorff
distance, etc.). To each image sequence F'®, F*) . F")
is assigned a “node” 4, B,...,N, to represent it in a graph
G, constructed and updated by the learning algorithm (a
real-data example is shown in Fig. 2). Using the proximity
matrix P, the initial set of nodes C = {4,B,...,N} is di-
vided into subsets Cy,Cz,...,Cr (L < N/2) by connecting
each node 4 by an edge e(4, B) to a node B for which

B = arg min p{4,X}, (3)

xec,
X4

and grouping together in the same subset all nodes between
which exists a path. The length (or weight) of an edge is
equal to the distance between the two nodes, i.e. |e(4, B)| =
p(A, B). After each node is connected to its nearest neighbor
(determined by Eq. (3)), depending on the data in P, initial
“chains of associations” will be formed, i.e. the disjoint sets
C,.Cs.....Cy, each of which contains a chain of similar
views linked by edges across the face sequences. Next, each
set C; is connected to its nearest-neighboring set C; by an
edge e(A4;, B;) between the pair of nodes

(4:.B,) = arg min p(X,Y), (4)

XEC,
Yeg,

thus forming a new set C;; =C; UC;. This procedure of con-
necting nearest-neighboring sets and merging their elements
is repeated recursively until all sets are merged into one final
set, which is identical with the initial set C={4,B,...,N}.
Together, the set of nodes C, the set E of the N — 1 edges
connecting the nodes in C, the rule T" for node connectiv-
ity (based on the nearest-neighbor principle), and the dis-
tance function p, define a graph G(C,E,TI’, p), which by
construction is a free (i.e. a connected graph with no cy-
cles, Ref. [18]). Also, since the sum of the weights of the
edges of G(C,E, T, p) is minimal, it is known as a minimal

spanning tree (MST). MSTs have been proposed for detect-
ing and describing Gestalt clusters by Zahn [19], and here
we extend this approach to image sequences, although with
several modifications (introduced in the following sections)
which try to resolve some of the problems accompanying
this method.

After the initial MST graph is formed, for the purpose
of discrimination between different categories of faces, the
edges e(4, B) € E, connecting two image sequences 4 and B
in C, are divided into two subsets E* and E~ (E=E"UE ™),
so that “consistent” edges e (4, B) € E™ are said to connect
nodes which belong to the same face category (same per-
son), and “inconsistent” edges e” (4,B) CE~ to separate
nodes belonging to different categories, i.c. the latter des-
ignate the boundary between two different categories. Ini-
tially, all edges are labeled as consistent, and after that each
edge e(4,B) €E in G is re-assigned a new consistency la-
bel, based on the following consistency rule:

Consistency rule ®@: The consistency of the edge e(4, B)
between any two nodes 4 and B in G is determined by
the following binary function ¢(4,B), which assigns con-
sistency labels “1: consistent” or “0: inconsistent” to each
e(4,B) in G:

$(4.B)

A, A;
1: (p(A,B) < 0y ZA"EA_{B} pi4, )>

dAa)—1

ZB,GB—{A} p(B,B:)
AND <p(A,B) <o =T )

0 : otherwise.

(5)

In Eq. (5), A (B) is the set of all nodes 4;(B;) connected
by a consistent edge to node A(B), £(A)E(B)) is its cardi-
nality, and o, is a constant, called a factor of inconsistency.
If some node in the pair (4, B) is a terminal node, then the
condition in which it participates is considered to be satis-
fied. The order of consistency label assignment is important:
it starts with the largest edge and proceeds in descending
order of the edge sizes. The graph obtained after the con-
sistency label assignment (5) is performed for each edge, is
defined by G(C,E* UE ™, '+ ®, p), where the rule for con-
sistency label assignment @ in Eq. (5) is added to the rule I'
for node connectivity. The inconsistent edges e(4,B) € E™
partition C into disjoint sets (clusters) C; (i : 1,...,K), and
K is the number of different face categories obtained by the
construction of G, i.e. in G all nodes connected by consis-
tent edges are considered to belong to the same face cate-
gory, while inconsistent edges partition sample space into
clusters belonging to different categories. In this way, any
two image sequences linked together by a consistent edge
are said to form a “consistent association”, and the structure
of each cluster obtained by traversing the consistent edges
in the resultant chain of associations, is completely defined
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by the subgraph G;(C; CC,Ef CE",I' 4+ ®, p)CG. Fig. 2
shows an example of the resulting graph using real data sam-
ples, some additional samples of which are shown also in
Fig. 7.

2.3. Splits and merges of associations

MSTs can represent clusters with arbitrary forms which
is very useful in the case of faces or other real-world 3D
objects whose patterns’ distributions vary significantly with
changes of view point, illumination conditions, etc. How-
ever, in order for the MSTs to function properly, the assump-
tion that the distances between similar views of the same
object are always sufficiently shorter than the distances be-
tween similar views of different objects needs to be satisfied.
In reality, this assumption might not be satisfied for many
reasons: noise, imperfect features or distance functions, etc.
As data accumulates, the probability of occurrence of pairs
of associations from different categories satisfying the con-
sistency constraint also increases. In such circumstances, the
very useful property of the MST, to chain together similar
associations, might turn into a defect of the method, result-
ing in the so-called chaining effect (Everritt [11]), which
links together samples from different categories into a sin-
gle cluster. In order to alleviate this problem, the graph
G(C,E* UE™, T + ®, p) from Section 2.2 is further modi-
fied using the association split/merge procedures introduced
in this section, which utilize local statistical information to
identify and correct the inter-category boundaries overrid-
den by the chaining effect.

2.3.1. Association splits

In the MST graph G, for each non-terminal node X, which
is connected by consistent edges to #(X) (7(X) > 2) nodes
(i.e. serves as a bridge connecting each pair among the #(X )
nodes), execute the following association split procedure.

Association split algorithm

For each of the n(X)(n(X) — 1)/2 different associa-
tion pairs represented in G by nodes Y; and ¥, (j,k :
1...n(X); j#k) calculate the binary functions

F(Y), Y, X)
n(X)
1Y, Ye) > 00— ) p(X, 1)),
! n(x) ;

(6)

—1 : otherwise

where o7 is a constant (6> = 7). A positive value for
F(Y;, Y4, X) implies that node X bridges two associations
coming from different categories, and in order to avoid
the resulting chaining effect, one or both of the consistent
edges e”(Y;,X) and e*(¥;, X) have to be replaced by an
inconsistent edge. Which edge will become inconsistent is
determined by evaluating F(Y;, Y., X) and F(Y;, Y;,X) for

all values of i (i : 1...y(X); i#J; i#k), as follows:
if (F(Y;,Y,X)>0AND F(¥,Y:,X) > 0) for some i
= replace ¢ (¥, X), e (¥4, X)
with 7 (Y. X), e (Y, X); )

if (F(Y;,Y1.X) <0 AND F(Y,, Y, X) < 0) for all i
= replace e (¥, X), e (¥}, X)
with e (¥,,X), e (Yi, X); (8)

if {F(Y,Y,X) <0 forall i}
AND {F(Y;, Y, X ) > O for some i})
= replace e’ (¥}, X) with e (¥, X ); )

if ({F(Y;,Y;,X)> 0 for some i}
AND {F(Y, Y1, X) < 0 for all i})
= replace ¢ (¥, X) with e (¥}, X). (10)

In order to distinguish between the inconsistent edges
obtained as a result of the rule (5) during the initial MST
formation, and the inconsistent edges obtained by Egs.
(6)—(10), we will call the former inconsistent edges of type
1, and the latter inconsistent edges of type 2. Two associa-
tions connected by an inconsistent edge of type 2 are said to
form a pair of spurious associations, because although the
edge between them satisfies the consistency criterion @ in
Eq. (5), they yield a positive value for F(-) in Eq. (6),
i.e. they are considered to belong to different categories. In
the split procedure above, only nodes at depth 1 (i.e. only
the nodes directly connected by consistent edges to the
bridge-node X) are considered in the calculations (6)—(10),
but if necessary, nodes at arbitrary depth can be included,
the extreme case being when all nodes in the current cluster
are involved in the calculations for each bridge-node X.
An example illustrating the split procedure applied to some
real data is shown in Fig. 3.

2.3.2. Association merges

After the split procedure above is executed for all nodes
X € G, itis possible that together with the spurious associa-
tion links, some legitimate ones might also have been split.
This over splitting is especially likely to occur in the initial
stages of the learning process (when not enough image se-
quences are available), and as a result the real clusters might
be broken down into several smaller clusters, typically into
one or few larger and many much smaller clusters-satellites.
This situation can be significantly improved if the associa-
tion split procedure is followed by a recursive association
merge procedure. Also, the association split procedure guar-
antees that no spurious association chains (as defined by
Eq. (6)) exist in G, but does not guarantee that the struc-
ture of the tree is optimal with regard to consistency. After
the splitting, the graph G still has the same connectivity as
the initial MST, only the type of its constituent edges has
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changed. Therefore, G is still optimal in the sense that the
sum of the lengths of its connecting edges is minimal. For
our task, however, we would rather relax the condition for
optimality in regard to the sum of edge lengths, in order to
obtain optimality in the sense that the resulting tree struc-
ture would partition sample space into the least number of
clusters (i.e. the number of inconsistent edges is minimal),
while at the same allowing no spurious chains of associa-
tions to corrupt the discriminative power of the representa-
tion. In order to achieve this type of optimal tree structure
we propose the following merge algorithm.

Merge algorithm

Step 1: Sort in ascending order all clusters obtained after
the execution of the association split procedure, i.e. all clus-
ters separated from each other by inconsistent edges type 1
or type 2.

Step 2: Attempt to merge each cluster Ck to the nearest
cluster C; by connecting with a consistent edge their respec-
tive nodes X¢, and X¢,, for which the following conditions
are satisfled simultaneously:

(1) F(Y;, Y, Xco ) < 0 forall jk
ok o 1on(Xeg)s j#K) (11)

(2) F(Y;, Vi, Xe,) <O for all j,k
Gk s 1en(Xe,); j#K) (12)

(3) &dCx) < &CL) (13)

Step 3: Exit if no new cluster merges occur in step 2,
otherwise continue with step 4.

Step 4. Sort all obtained clusters in ascending order and
go to step 2.

In step 2 above, &(C) is the cardinality of cluster C, and
the functions F(-) are defined as in Eq. (6). If such nodes
Xc, and X, exist, then the inconsistent edge between Cx
and C; will be deleted and substituted by the new con-
sistent edge e*(Xc,, Xc, ). If more than one pairs of nodes
(X, Xc, ) satisfy Egs. (11)—(13), that pair the edge be-
tween which has the shortest length is chosen. If a pair of
nodes satisfying Eqgs. (11)—(13) does not exist, Cx and Cr.
are not merged. Requirements (1) and (2) in step 2 en-
sure that the newly inserted consistent edge e’ (Xc,,Xc, )
will not connect Cx and C, by a spurious associative link.
Again, in order to distinguish between the consistent edges
obtained as a result of the consistency rule @ in Eq. (5)
during the initial MST formation, and the consistent edges
inserted during the merge step, the former are named con-

sistent edges of type 1, and the latter consistent edges of

type 2. The process of modifying the initial MST by the split
and merge procedures is illustrated in a schematic form in
Fig. 4(a)—(c). The modified tree structure, obtained after the
execution of the association split/merge procedures above,

is used to determine the final clustering. It can be symboli-
cally represented as G(C,E" UE™, T + @ + ¥, p), where
W reflects the process of substitution of consistent edges in
G(C,ETUE~,T+®, p) with inconsistent edges type 2 dur-
ing the associations splits, and replacement of inconsistent
edges with consistent edges type 2 during the associations
merges.

2.4. Incremental learning and online recognition

This section describes the incremental version of the al-
gorithm introduced in the previous two sections. When a
new image sequence is available from the input, its corre-
sponding node can be easily added to an already existing
graph G (which initially might consist of only two nodes) in
incremental fashion. First, assume that the current internal
state of the system is represented by the relations between
N(N > 1)nodesin G, to which the newly available (N +1)st
node has to be added. This can be easily accomplished by
the following algorithm for incremental node addition.

Algorithm for incremental node addition

Step 1: In the proximity matrix P compute the (N + 1 )st
row corresponding to the new node Xy:.

Step 2: Find the nearest-non-spurious neighbor of X1,
node K (see Fig. 5a):

K:argy?;(r}()p(Y,XVH). (14)

InEq. (14), A(X) is the set of all nodes X which if connected
to Xy.1 by a consistent edge e (X, Xy+1), at least one of the
following three conditions would be satisfied:

. F(Xy1+1,Y,X) <0 forall ¥, (i :1...0(X)); (15)

2. F(Xy41,Y:,X) <0 forall ¥;, for which
P(Xn+1,X) < p(X, Y2 ); (16)

3. p(XN+17X) <mlnp()(7 Yl)s (17)

where the functions F(-) are defined in Eq. (6), ¥; are all
nodes connected by a consistent edge to X, and n(X) is
their number. Condition 1 in Eq. (15) is satisfied by all
nodes X which would form a non-spurious association link
if connected to Xy;. Condition 2 in Eq. (16) is satisfied
by all X which would form a non-spurious association link
when connected to Xy, if the edges e(X, ¥;) to neighbors
farther away than Xy are ignored. If A(X )={J}, connect
Xy to its nearest neighbor by an inconsistent edge and
jump to step 4. Otherwise, connect nodes K and Xv.1 by
a consistent edge et (K, Xy1) and replace all e*(K, Y;) for
which
n(K}

p(Yi.K) > o1 Y KT + p(K.Xwe) | (18)
i=l

nK)y-+1
with e~ (K, Y;). After that, in case Eq. (15) was not satisfied
for node K, all e*(K, ;) for which F(Xy41,Y:,K) > 0 are
set inconsistent.
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= consistent edge type 1 consistent edge type 1

s=uxenai jnconsistent edge type 1 »=====. inconsistent edge type 1

»«=) == inconsistent edge type 2

@ ®)
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consistent edge type 1
mxamnes jnconsistent edge type 1

=—=O=— consistent edge type 2
===)6==: inconsistent edge type 2

(©)

Fig. 4. Schematic illustration of the association split/merge procedure. The initially built MST graph is shown in (a), where two clusters
are found (subjects K and T are grouped together because of the chaining effect). In (b), two spurious edges are marked as inconsistent
type 2 by the split procedure, as a result of which the cluster for subjects K and T is split successfully, but at the same time the cluster for
subject K is also split into two at nodes Kl and K3. In (c), the merge procedure reconnects the two groups for subject K by inserting a
consistent edge of type 2 between nodes K2 and K4.
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Fig. 5. Incremental node addition—steps 2 and 3. Intra-cluster
edges are updated after the addition of the new node Xy.1: (a)
illustration for step 2; (b) illustration for step 3. See text for details.

Step 3: After the necessary node insertions/deletions
in step 2 are accomplished, for all nodes L belonging to
the same cluster as node K(L,K € Cx), use the distances
p(L.Y;) between L and all nodes Y; connected directly to L
by a consistent edge, to reorganize G in the following way
(see Fig. 5b). First, let the subgraph Gg(Gx C G) repre-
senting cluster Cx be divided into two separate sub-trees,
Gk and G%, if e™(L, Y;) is temporarily removed from Gg.
Then consider the following two cases:

1. If removal of e"(L, ¥;) would place ¥; and the new node
X1 in the same sub-tree (i.e. ¥i, Xy-| € Gk = LcGx,
or Yi,Xn 1 €Gy = LeGk), then if p(L . Xy-1) <
p(L,Y;), and ¢ (L, Xy41) would not form a spurious
association link, delete e™(L, Y;) and insert a new con-
sistent edge between L and Xy .

2. If removal of e (L, ¥;) would place ¥; and the new node
Xv.i indifferent sub-trees (i.e. L, Xy11 € G) = Y, Gy,
or L Xy-1 €GY% = Y, €Gg), then if p(Xyy1, Y1) <
o(L,Y:), and et (Xy.1,Y;) would not form a spurious
association link, delete e™ (L, Y;) and insert a new con-
sistent edge between Xy 1 and Y.

It is easy to show that the above edge insertions/deletions
would update G, preserving its trec structure optimal in the
sense explained in Section 2.3.2. Steps 2 and 3 in the algo-
rithm for incremental node addition correspond to the MST
formation and association split steps in the batch version of
the AC algorithm, while step 4 below corresponds to the
association merge step.

Step 4: In steps 2 and 3 above, the intra-cluster edges in
Cx were updated, and now the same thing has to be done
for the inter-cluster (inconsistent) edges of G, to reflect the
influence of the addition of the new node Xy_i. Let Ck
be the cluster to which the new node belongs (see Fig. 6),
ie. Xv.1€Ck, and C; and C; are any two clusters in G
connected by an inconsistent edge E;; with length |Ey|. For
each Cy in G, use the distances p(Xy.1.P/), where

P,zargn}jnp()(,vﬁ,)",), a:1...8Cy), (19)

is the nearest node to Xv,; among all nodes Y, € Cy, to re-
organize G in the following way. For all C; in G (including
also the case C; = Cg), consider the temporal removal of
the inconsistent edge Ey; to each of its neighboring clus-
ters Cy (C, # Ck ), which would divide G into two separate
sub-trees, G' € G and G* C G, G' NG* = {J}. Then the
following two cases are considered:

1. If removal of £, would place Cx and C; in different
sub-trees (see Fig. 6a), ie. Cx € G' = C; C G*, or
Cx C G2 = C; C Gl, then if [)(X'V’+],PJ) < |E/J )
delete £, and insert a new edge between Py and Xv 1.
The consistency of ¢(P;, Xy 1) is determined depending
on whether it would or would not form a spurious asso-
ciation link.

2. If removal of E; would place Cx and C; in the same
sub-tree (see Fig. 6b), ie. Cx € G' = C; C G', or
Cx C G2 = C; C GZ, then if p(X,\«H,P/) < 1E1]‘,
delete E;; and insert a new edge between P; and Xv_1.
The consistency of e(P;, Xy-1) is determined depending
on whether it would or would not form a spurious asso-
ciation link.

The learning algorithm explained in this section can start
with some data gathered in advance, which is processed in
an offline “batch” manner, while subsequent additions of
new data are executed incrementally in an online manner.
Alternatively, it is possible to ensure online incremental per-
formance from the very beginning. If only two nodes (face
sequences) are available initially, they are connected by a
consistent edge, and further incoming input data is added
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cluster Cp,

cluster CJ

cluster C;

cluster G

cluster Cy

cluster C;

(b)

Fig. 6. Incremental node addition—step 4. Inter-cluster edges are
updated after the addition of the new node Xy .;. See text for
details.

sequentially, node by node, using the algorithm for incre-
mental node addition described above.

Online recognition, verification can be implemented iden-
tically to the node addition algorithm. A node corresponding
to the test sequence is inserted in the most recent version

of the graph G using the node addition algorithm from this
section, and the category of the test sample is determined to
be the same as the one of the cluster to which it is connected
by a consistent edge. In case the test sample is connected by
an inconsistent edge, it is rejected as a face which has not
been learnt yet.

3. Experimental results

In order to evaluate the performance of the proposed
method, several experiments have been conducted using
more than 300 face image sequences obtained over a pe-
riod of several months from 17 different subjects. A typical
example of the experimental setting can be seen in Fig. 1,
and several time-subsampled face sequences for different
people, together with time stamp labels obtained from the
preprocessor, can be seen on Fig. 7. The illumination con-
ditions were demanding and varied significantly with the
time of the day during which the samples were taken. The
video sequences’ length varied between 30 and 300 frames,
depending on the speed with which the subjects walked in
front of the camera, in the range between slow walking with
occasional stops, and running. Between 7 and 40 sequences
were gathered for each subject. Two different data sets were

TB‘-....E 12/11/00 04:22PM
.IHI fcF = 08/25/00 10:00AM
i .'..! '10/25/00 06:00PM
FBEIE 10/26/00 06:22PM

08/21/00 10:53AM

§10/05/00 03:46PM

05:35PM

03:41PM

07:15PM

Rl'ﬂﬁ'i. E%m/oo os:z2mm
R3 Hi g a a 10/06/00 03:38PM
R“ﬂi ~ -.

Fig. 7. An example of several time subsampled face sequences,
with category labels (to be obtained by the algorithm) shown to
the left, and the time stamps labels available from the preprocessor,
shown to the right.

01/22/01 00:04PM
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Table 1

Experimental results

Data set Sequences £48 N R (%)
used

A 200 11 3 93.0

B 177 6 19 85.9

A4+ B 377 9 34 88.6

used in the experiments below:

(a) Data set A: In this data set, the subjects were just
walking forward toward the camera. Predominantly frontal
faces were included, with a few side-view faces at the end of
the sequences, when the subjects passed beside the camera.
Sequences T1, F1, K1, K3, R1, R4 in Fig. 7 are representa-
tive for the data included in this set;

(b) Data set B: In this data set, the subjects were told
to look to the left and right, up and down, as they moved
towards the camera. Both frontal and side-view faces were
represented in this data set. Sequences T2, T3, F2, F3, K2,
R3 in Fig. 7 are representative for the data included in this
set.

Samples with and without glasses were included for all
subjects who had such, and hair length/styles changed with
time. Resolution of the original images was 320 x 240 pixels,
and 18 x 22 pixels for the normalized face-only images. Near
real-time processing was achieved on a SGI O2 workstation
with a R12000 (300 MHz) processor. The following formula
was used for calculating the recognition (self-organization)
rate R:

R:(l.O—

M) X 100%, (20)

where V is the total number of sequences to be grouped, 4z
is the number of sequences which are mistakenly grouped
into the cluster for certain category 4, although in reality
they come from category B, and & is the number of samples
gathered in clusters in which no single category occupies
more than 50% of the nodes inside them. The following three
experiments were conducted, with results given in Table 1.
In all experiments data from all 17 subjects were used.

Experiment 1 Only data from data set A were used, where
predominantly frontal faces were included.

Experiment 2 Only data from data set B were used, where
both frontal and side-view face images were included.

Experiment 3 Both data sets 4 and B (all available data)
were used.

The results obtained in experiments 1-3 above indicate
that the AC algorithm could provide a simple and efficient
way to detect (in an unsupervised manner) and represent cat-
egory groups of complex 3D objects, such as faces, whose
appearance might vary significantly with changes in view
angle, illumination conditions, etc. This is made possible by
the formation of association links involving different views
in the individual sequences, as for example can be seen in

Fig. 8. Illustration of the mechanism by which two very different
views of the same subject (with high inter-scquence dissimilarity
value) can be grouped together using the AC algorithm. The se-
quences in the top and bottom row contain only frontal and side
views, respectively. Consistent associations formed between each
of these sequences and the face sequence in the center row (which
contains both frontal and side views of the same person) makes it
possible to label the three sequences with the same category.

Fig. 2 for the sequences F4, R3, R5. It should be noted that
the tree G obtained as a result of the AC algorithm is func-
tionally very different from the trees obtained in standard
hierarchical clustering algorithms, in which every node rep-
resents a single individual pattern. In G, each node, although
designated by a single point in the graph, might represent
several very different patterns. For example, if a certain node
X in G is directly connected to nodes 4 and B, it does not
mean that the face connected to 4 and the face connected to
B are identical, or even similar. Actually, one of these faces
may be a frontal face and the other a side-view face, the
distance between which could be very large in terms of the
concrete metric being used. To further illustrate this point
using a somewhat more extreme example, suppose that for
a certain subject the following two sequences are available:
one containing only frontal face views (e.g. about 0°), and
one containing only side views (e.g. near 90°), as those
shown in the top and bottom rows of Fig. 8. Even with more
sophisticated features or distance measures than those used
in our experiments, it would be difficult to recognize that
these face sequences belong to the same subject. In the AC
algorithm, rather than relating directly those two sequences
to each other, or to a certain reference center (like the cen-
troids in the k-means-variant algorithms, which would put
severe restrictions on the structural form of the clusters),
the clustering is performed by relating cach one of them to
a third sequence (e.g. as the one shown in the center row
of Fig. 8), or a connected group of sequences, which by
virtue of the gradual sensory variation displayed in them,
provide the links necessary to discover the relation between
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Fig. 9. Several examples of pairs of faces from different categorics, found to be very similar (nearest neighbors) by the face matching

procedure (1).

the seemingly distant samples. As a result of this, travers-
ing the “chain” of consistent associations eventually permits
to group together samples which might seem very far from
cach other in terms of the available metrics. It should be
noted that this strategy is applicable not only to the casc of
different views, but also to differences in illumination con-
ditions, scale, resolution, etc., and even can be applied to
other sensory modalitics.

Regarding the clustering errors in the experimental re-
sults reported in Table 1, part of them can be explained with
the limitations inhcrent in the face matching technique (1)
used to determine the distance between two face images (see
Fig. 9 for several examples illustrating this problem). Us-
ing more sophisticated face matching schemes, or calculat-
ing the inter-sequence distances in a better selected feature
space would further improve recognition. Also, because of
the large volume of input data which had to be processed,
it was impossible to check whether all face images in each
of the resultant image sequences obtained from the prepro-
cessor were legitimate ones, and this also might have con-
tributed to some of the clustering errors. Some automatic
procedure for face validation has to be inciuded in the fu-
ture versions of the system. The relatively lower recognition
rates obtained in the more difficult experiment 2 can be ex-
plained to some extent with insufficient data—typically less
than one face sequence per week was available for most
subjects. Additionally, part of the data samples in set B con-
tained excessive and exaggerated head movements, which
would be unlikely to happen in real situations, but were in-
cluded as a more difficult test. The overall performance im-
proved when set B was mixed with set 4 in Experiment 3. In
conclusion, despite the above-mentioned problems, the ex-
perimental results still can be considered promising, having
in mind the difficulty of the task and the demanding envi-
ronmental conditions in which they were obtained.

4. Conclusion

In this paper we have proposed a novel method for
unsupervised face recognition from video sequences of
time-varying face images obtained over an extended period

of time in real-world conditions. The learning process im-
plemented by the method does not rely on category-specific
information provided by human teachers in advance (which
might be biased by their limited understanding of the com-
plex real-world environment), but rather lets the system
find out by itself the structure and underlying relations in-
herent in the sensory input. The proposed method provides
the following important advantages: (a) it allows all stages
of the resulting face recognition system to be completely
automated, avoiding the need for manual segmentation and
labeling of the input stream. Manual segmentation and
labeling of the input stream might be impractical and some-
times impossible, e.g. in online video surveillance systems;
(b) this permits to train the system with a sufficient quan-
tity of input data, providing the higher level of sensory
variation necessary for such a challenging task as the one
attempted here; (c¢) both frontal and side view faces can be
learnt/recognized by the method; (d) the proposed method
has a natural incremental implementation, allowing for
“non-destructive” learning, which also may be important in
online systems dealing with large databases.

Results from several experiments using both frontal and
side-view face sequences obtained under demanding illumi-
nation conditions were reported here, achieving recognition
rate of 88.6% for the data sct obtained until now. Although
the preliminary results are encouraging (having in mind the
difficulty of the task), additional tests with much larger data
sets have to be done in order to obtain further insights about
the limitations and possibilities of the present method.
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