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A Quick Search Method for Audio and Video
Signals Based on Histogram Pruning
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Abstract—This paper proposes a quick method of similarity-
based signal searching to detect and locate a specific audio or
video signal given as a query in a stored long audio or video
signal. With existing techniques, similarity-based searching may
become impractical in terms of computing time in the case of
searching through long-running (several-days’ worth of) signals.
The proposed algorithm, which is referred to as time-series
active search, offers significantly faster search with sufficient
accuracy. The key to the acceleration is an effective pruning
algorithm introduced in the histogram matching stage. Through
the pruning, the actual number of matching calculations can be
reduced by 200 to 500 times compared with exhaustive search
while guaranteeing exactly the same search result. Experiments
show that the proposed method can correctly detect and locate a
15-s signal in a 48-h recording of TV broadcasts within 1 s, once
the feature vectors are calculated and quantized. As extentions of
the basic algorithm, efficientAND/OR search methods for searching
for multiple query signals and a feature dithering method for
coping with signal distortion are also discussed.

Index Terms—Audio fingerprinting, audio search, multimedia
databases, multimedia information retrieval, video search.

I. INTRODUCTION

T HIS paper proposes a method for searching quickly
through a long audio or video signal (termed astored

signal) to detect and locate a known reference audio or video
signal (termed aquery signal).

Audio and video data from radio, television, databases, or
on the Internet has been a source of recent research interest.
Among the many studies that have targeted audio or video in-
formation search, most have dealt with so-called content-based
retrieval by means of indexing and classifying audio or video
information. For example, in image or video retrieval tasks, a
major issue has been constructing efficient indexes [1]–[4]. Sim-
ilarly, in audio retrieval tasks, most works have been based on
high level information such as audio content classification (e.g.,
indexes for speech segments and nonspeech segments), recog-
nized speeches, or transcribed musical pieces [5]–[9].

In contrast, this study concerns a similarity-based search,
which is the search of and retrieval from unlabeled audio or
video archives based solely on a signal similarity measure.
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Fig. 1. Block diagram of the proposed search algorithm.

Though the range of applications for similarity-based search
may seem narrow compared to content-based retrieval based on
high level information, this is actually not the case: applications,
such as detection and statistical analysis of broadcasted music
or commercials, or copyright management on the Internet, are
possible. Just as high-speed text search algorithms have come
into widespread use, quick search algorithms for audio or video
signals may too become basic technologies of handling multi-
media information.

A conventional approach for the similarity-based search of
audio or video data (hereafter time-series data) is the signal
detection technique based on correlations of data itself or on
feature vectors extracted from the data [10]. However, with
this technique, searching may become impractical in terms of
computing time in the case of long-running (e.g., several-days’
worth of) stored signals or many reference signals. Search
speed might be improved through a rougher matching, but that
would inevitably reduce search accuracy and reliability.

The algorithm proposed in this paper offers significantly
faster search with sufficient accuracy. The key to the accel-
eration is an effective pruning algorithm introduced in the
feature matching stage using feature histograms. Through the
pruning, the actual number of matching calculations is reduced
by 200 to 500 times compared with exhaustive search while
mathematically guaranteeing the same search result.

The rest of this paper is organized as follows. Section II de-
scribes the basic algorithm, and discusses some extension to
efficient AND/OR search and feature distortion absorption. Sec-
tion III evaluates the proposed algorithms under realistic cir-
cumstances. Finally, Section IV gives conclusions.

II. THEORY

A. Basic Algorithm

Fig. 1 outlines the proposed algorithm. Firstly, the feature
vectors are calculated from both the query signal and stored
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signal. The windows are then applied to both the query-signal
and stored-signal feature vectors. The feature vectors over the
windows are classified into a certain number of types, and
the number of occurrences of each feature type is counted
to create the histogram. The window length is the same as
the query signal duration, though we will later discuss cases
where the window is divided into multiple small windows.
Thirdly, similarity between the query-signal histogram and
stored-signal histogram is calculated. When the similarity
exceeds a threshold value chosen in advance, the query signal
is considered to be detected and located in the stored signal.
In the last step, the window on the stored signal is shifted
forward in time and the search proceeds. We call this algorithm
“time-series active search.”

B. Features

Various types of features have been proposed in the audio
and image retrieval field. The widely-used audio features
include zero-crossing rates of waveforms [11], [12], short-time
frequency spectrum, linear predictive coding coefficients (LPC)
[13], [14], and mel-frequency cepstral coefficients (MFCC)
[14]–[16]. On the other hand, the image features include color
distribution [17], [18], shape features [19], and spatial features
such as discrete cosine transformation (DCT) coefficients [20]
and wavelets [21].

Among those, our preliminary experiments showed that the
short-time frequency spectrum calculated by a bandpass filter
bank and the color distribution provide sufficient accuracy for
our similarity-based signal search task [22], [23]. Therefore, as
computationally inexpensive features, the short-time frequency
spectrum and the color distribution are specifically introduced
here, as audio and video features, respectively.

Audio feature vector is written as

(1)

where is the sampled time. The element is the normal-
ized short-time power spectrum, which is given as

(2)

(3)

(4)

where is the output waveform of bandpass filterat time
the time support of the feature vector, the number of

frequency channels, and a normalization constant defined
as

(5)

Bandpass filter can be implemented as a 2nd-order infi-
nite impulse response (IIR) filter and thus it is computationally
inexpensive.

The video feature vector is based on colors. To extract it, the
image in each video frame is divided into subimages. Letting

designate the video frame number andthe subimage
, we express the video feature vector as

(6)

where denotes either (red), (green), or (blue). The number
of subimages is empirically chosen. is the normalized
color (red, green, or blue) value given as

(7)

where

(8)

where is a set of pixels in the-th subimage, stands for
the number of pixels, and denotes the color value of the
pixel . The color information is employed because it has been
successfully applied in visual object recognition [17], [24].

C. Histogram Modeling

In this paper, a histogram is a frequency distribution of the
feature vector occurrences over the window. The frequency
distribution is obtained by classifying the feature vectors
according to a certain vector quantization algorithm and
counting the number of occurrences for each quantized code.
In the vision field, histograms have been employed as image
models by many researchers; for example, Swainet al. have
shown that the histogram space provides sufficient inter-object
discrimination in vision [17].

Since the feature vectors are not uniformly distributed in the
feature space, feature vector density should be considered in
the classification process in order to efficiently represent signals
with a histogram. Thus, we use the Linde–Buzo–Gray (LBG) al-
gorithm to create a quantization codebook. The LBG algorithm
enables the number of codes assigned in the feature space to re-
flect the feature vector density; that is, the number of codes for
regions where feature vectors are dense becomes greater than
that for regions where they are sparse. Then, in the quantization
stage, an input feature vector is assigned the nearest code in the
codebook.

Histogram is then defined as

(9)

where is the number of histogram bins, i.e., the codebook size
in the above mentioned vector quantization process, andis the
number of feature vectors classified into-th quantization code
observed over the window. As mentioned earlier, the typical
window length is the query signal duration. For simplicity, how-
ever, we will not explicitly express the window length in math-
ematical notations for histograms unless specifically needed.

The similarity between the query- and stored-signal his-
tograms over the windows can be determined in several ways,
for example, by using the and distance measures. Here,
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we employ histogram intersection, which is equivalent to the
distance measure. The similarity is defined as

(10)

where and are the histograms for the query and the
stored signal respectively, andis the window length. The his-
togram intersection measure is used because it is computation-
ally simple, and it has been used successfully in visual object
detection [17].

D. Window Skipping

As the window for the stored signal shifts forward in time,
similarity based on the query- and stored-signal histograms
shows a certain continuity from one time step to the next. The
time-series active search takes advantage of this by computing
an upper bound of the similarity measure as a function of the
time step and skipping all intermediate time-step similarity
evaluations until this upper bound exceeds the detection
threshold.

The upper bound on is

(11)

where and are the histograms created by the
stored-signal window for frame numbersand . Using (11),
we can derive the skip width for the window straightforwardly:

if
otherwise

(12)

where is the skip width, and means the greatest integral
value less than. It should be noted that it is guaranteed that we
will not miss any sections that will give similarity values greater
than , even if we skip the width given by the (12). This is
because (11) states thatcan not be greater thanbefore the
window moves forward by the width .

In the sense that the proposed method accelerates the search
guaranteeing that nothing is missed, the method is similar to
the quick string matching methods such as Boyer–Moore [25]
and Knuth–Morris–Pratt [26] algorithms. However, the idea of
skipping here is different from those algorithms in that our al-
gorithm is based on the similarity upper bound and property of
histograms.

E. Detection Criterion

The basic assumption here is that the similarity is not usually
very high, according to a certain distribution, but outstandingly
high at the positions where the query signal can be considered
to be detected on the stored signal.

To decide detection criterion for similarity, it is essential to
model the similarity distribution. However, without simplistic
and unrealistic assumptions, it is difficult to obtain the similarity
distribution in an analytic form. Therefore, we model the distri-
bution on an experimental basis.

Preliminary experiments showed that histogram intersection
offered different statistical properties depending on the query

Fig. 2. Search incorporating time order.

signal and stored signal. For this reason, the search threshold
should be set according to the query signal and stored signal.
When the similarity distribution is modeled by the meanand
standard deviations , we determine the search threshold,,
such that

(13)

where is an empirically determined constant. The values of
and are calculated preliminarily for each query signal by

sampling stored-signal feature vectors with respect to the query
signal. In (13), means a distance from the similarity distribu-
tion, and thus, we can take the distribution into account. Equa-
tion (13) implies the search for segments in stored signals that
offer much-higher-than-average similarity to the query signal.

F. Search Incorporating Time Order

Since the histogram introduced here is an accumulated rep-
resentation of feature vectors over the window, the histogram
does not reflect the time order of feature vectors. This may
sometimes cause insufficient discrimination performance in the
search. However, the time order can be considered by dividing
windows into a certain number of subwindows. In such
cases, similarity is firstly calculated for each query- and stored-
signal histogram pair in the corresponding time positions, and
then the similarities are integrated, as shown in Fig. 2.

For similarity integration, we consider taking the minimum.
The minimum operation corresponds to the “AND” search with
respect to the individual subwindows. TheAND search finds the
sections where the similarities for all of the multiple query sig-
nals exceed a given threshold value. When the
similarity for the total window is defined as

(14)
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where means the similarity for-th subwindow, the problem
is to find the section where exceeds a threshold value.

A straightforward method for this search is to sequentially
calculate ’s one by one, which we call the “sequential
method”. Letting be the skip width for the-th subwindow
when the original window is at a current position, we express
the skip width for the original window as

(15)

Note that we can take the maximum overrather than the min-
imum. This is because (14) states thatis always equal to or
less than if at least one of the ’s is equal to or less than
, meaning that cannot be greater thanwhile the window

moves forward by any less than the maximum ofwith re-
spect to .

In reality, it is often more efficient to stop matching and skip
the original window as soon as an that does not exceed
is found, rather than to calculate for all . We call this the
“sequential-break method.”

Meanwhile, when the subwindows are adjacent to each other
(that is, when the original window is divided into subwindows
as mentioned above):

(16)

holds, where is the similarity for the original window and
is the similarity for one of the divided windows (see Ap-

pendix A for the proof). Note that does not always equal
; in fact, (14) and (16) lead to

(17)

Equation (17) means that the section where the similarity ex-
ceeds the threshold in the search with respect to the divided
window can not be skipped by the search with respect to the
original window. Hence, one can at first search with respect to
the original window, and if the similarity exceeds the threshold,
then search with respect to the divided windows. We call this
scheme the “refinement method.”

At this point, it is interesting to know which of the two
methods, the sequential-break method or the refinement one, is
more efficient on average. We let denote the skip width for
the original window, and compare and . For simplicity
of notation, here we consider the case where and omit
ceiling operation in (10); thus is written as

(18)

Equation (18) is calculated as

(19)

where is the length of the subwindows. If we assume that
the the similarities are uniformly distributed with respect to time
(that is, ), we obtain

(20)

Fig. 3. Relations between the similarities.

using (19). This means that, under the above mentioned assump-
tion, the refinement method should be more efficient than the
sequential-break method.

G. Parallel Search

Typical applications of the proposed search method are as-
sumed to include counting the occurrences of specific commer-
cials in TV broadcasts and searching the Internet for copyright
management purposes. In such applications, searching for mul-
tiple query signals is often needed, and this motivates our re-
search on an efficient parallel searching method for multiple
query signals given at the same time.

Suppose we have query signals ,
each of which creates the histogram , and we have the his-
togram created for the current window position on the stored
signal . For simplicity, we assume that , the number of total
votes in the histogram , is equal for all and is . Now
we calculate , the similarity between the -th
query-signal histogram and stored-signal histogram ,
using (10). We are then interested in knowing the upper bound
of the similarity without actually matching the histograms

and . The upper limit of is given by

(21)

This inequality is derived as follows. Fig. 3 illustrates the rela-
tion between the similarities. Suppose we have just performed a
matching calculation between the-th query signal and a stored
signal and obtained . We assume that has been
calculated for all and prior to the search process. We con-
sider the following two cases:

1) Case 1 : Supposing that the -th query
signal and -th query signal are very similar will help in under-
standing this case.

Now we introduce a new symbol that refers to a set whose
members are the individual feature vectors voted to a histogram.
Then, denotes a set comprising the elements of

(that is, the feature vectors voted to ) contributing
to the similarity to . Letting be the number of
members of the set, (10) can be written as

(22)

In the same way,

(23)

holds.
Now , and the relationship shown in Fig. 4

holds. The left panel of Fig. 4 shows the relationship between
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Fig. 4. Relations between histograms (1).

Fig. 5. Relations between histograms (2).

and , which was calculated by actual matching. Now
we consider the case when is maximized with re-
spect to the relationship between and . The conditions
are 1) all elements of are included in and 2)
all elements of except for the elements in
(shadowed area in Fig. 4) contribute to increase the similarity to

, as illustrated in the thick line in the right panel of Fig. 4.
Mathematically, the condition is written as

(24)

Equations (22) and (23) lead to

(25)

2) Case 2 : Supposing that the -th query
signal and -th query signal are quite unsimilar will help in un-
derstanding this case.

Similar discussion to the Case 1 gives the relationship shown
in Fig. 5. Thus, the condition for being maximized
is 1) The all elements of are included in and
2) all elements of except for the elements in
(shadowed area in Fig. 5) contribute to increase the similarity to

. That is

(26)

and, therefore

(27)

Equations (25) and (27) are written as (21).
This leads to a parallel search algorithm that comprises the

following steps.

1) As a preprocessing, calculate similarities for all combina-
tions of query signals and store them.

2) Locate the current position at the first frame of the stored
signal (this is the start of the search process).

3) Choose the query signal whose skip position is closest
to the current position, and update the current position to
that skip position.

4) Match the chosen query signal with the stored signal at
the current position to obtain a similarity value.

Fig. 6. Feature vectors voted with dithering.

5) Update the skip widths for all the query signals based on
the obtained similarity value.

6) Return to Step 3.
In this scheme, the number of matching calculations in the

search process is guaranteed to be less than or equal to the case
where the query signals are separately matched with the stored
signal. When is not necessarily equal for all, one can let

be a minimum of , and then the above discussion is valid
for the segments with the length.

H. Feature Distortion Absorption

In realistic situations, signals can be affected by noise or dis-
tortion. For example, audio signals played back through loud-
speakers and recorded with microphones, or extremely com-
pressed to a low bit rate, can be considerably different from the
original signals. To deal with such signal differences or distor-
tion, here we propose a feature distortion absorption method.

In the method, the observed feature vectoris voted to a
histogram as a probability density distributionrather than a
single deterministic vector, as illustrated in Fig. 6. Assuming
that can be sampled by a finite number of random vectors ac-
cording to the distribution, feature vector voting is transformed
into voting possibly-multiple dithered vectors that are given
by

(28)

where is a random vector and is the number of votes for a
feature vector. We call this “probabilistic dither voting.”

The problem is then the estimation of the probability density
distribution that maximizes the similarity value given by (10)
when the original signals are identical. This is done by intro-
ducing a learning stage prior to the search.

In the learning stage, a pair of signals, one before and the
other after the feature distortion, are prepared. The latter signal
is obtained by processing the original signal actually by the
target distortion model; for the learning of low-bit-rate compres-
sion, for example, the original signal is compressed at a low bit
rate to obtain the distorted signal.

By comparing the features of those two signals on a
frame-by-frame basis, the distortion can be learned. That is,
the shift of feature vectors due to the distortion is statistically
learned by subtracting the original feature vectors from the
corresponding distorted feature vectors.
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TABLE I
EXPERIMENTS

In our experimentation, the learning is done for each his-
togram bin (that is, each vector quantization code), and fea-
ture distortion is modeled by a combination of a shift and the
Gaussian distribution in the feature space. That is, two parame-
ters, the shifting vector and the standard deviation of the normal
distribution for each vector quantization code, are to be learned.

The multiple kinds of distortion can be taken into account by
preparing a query signal for each distortion type and searching
them in parallel. In such a case, we can expect that the parallel
search algorithm described in Section II-G is effective, because
the query signals being searched in parallel originate in the same
signal, and are likely to be similar to each other.

As the number of votes for representing the probability dis-
tribution in the feature space increases, the distribution is better
represented, while the computational cost of voting is also in-
creased. If the query signal is sufficiently long in duration, how-
ever, only one vote for each feature frame is sufficient, because
the feature occurrence is accumulated in creating histograms.
In our experimentation, only one vote is cast for each feature
frame.

III. EXPERIMENTS

Five types of experiments were conducted (Table I). Experi-
ments 1 and 2 were conducted to evaluate the basic performance
of the proposed method, and Experiments 3, 4, and 5 to evaluate
the extensions. All the measurements were done on a PC (Pen-
tium III 933 MHz, Linux).

A. Search Speed

In Experiment 1, a video recording of 48 h of TV broad-
casting was the stored signal. The query signals were ten ran-
domly chosen 15-s commercial messages, captured from other
TV recordings. Thus, the task was to detect and locate specific
commercial messages from two-days’ worth of a TV recording.
Each commercial message was played four to eight times during
the stored 48 hours.

In the audio feature extraction, the audio track (VHS Hi-Fi
format) of the recording was first digitized at 11.0 kHz sampling
frequency and 16 bit quantization accuracy, and then analyzed
by a seven-channel 2nd-order IIR bandpass filter bank
(the filter ). The filter center frequencies were equally
spaced in a log frequency scale. The feature vectors as described
in (2) were calculated every 10 ms .

TABLE II
SEARCH SPEED WHEN A 15-s QUERY SIGNAL WAS SEARCHED

THROUGH 48-h STORED SIGNAL

In the video feature extraction, the video signal (NTSC) was
captured at 29.97 frames/s without compression. The capture
size was 160 120 pixels. Each frame image was divided into
16 subimages and feature vectors were calculated as
in (6).

In discussing search speed, we distinguish preprocessing
from searching. The preprocessing comprises processes that
can be done before a query signal is given. These are 1) feature
extraction for the stored signal and 2) vector quantization
for the stored signal. After a query signal is given, 3) feature
extraction for a query signal, 4) vector quantization for the
query signal, and 5) matching between the query signal and
each section of the stored signal, are performed. When we refer
to search speed or search time, it specifically means the time
needed for the fifth step, matching.

From the practical viewpoint, however, the time needed for
processes other than the matching is also important. The CPU
times needed for feature extraction for a 1-h signal were 53.2
s in the audio case and 150.2 s in the video case. The CPU
times needed for vector quantization for a 1-h signal were 16.3
s for the audio feature and 62.7 s for the video feature. This
means that feature extraction and vector quantization requires
approximately 2% of the signal duration time in the audio case
and 6% in the video case.

The search time depends on the signals to be matched, the
detection threshold, and the number of histogram bins. Table II
shows the CPU time averaged over ten query signals; here, the
search threshold was fixed at 0.7 and the number of histogram
bins was 512 for both the audio and the video features. It was
verified that all the search results were correct, which means that
there were neither redundant detections nor misses.

It is shown that the proposed method takes less than 1 s to
search through the stored 48-h signal both in the audio case and
in the video case. The number of matching calculations was
reduced to approximately (audio) or (video) in
comparison with the exhaustive search. The CPU time was also
shortened by (audio) or (video).

Figs. 7 and 8 show a part of the corresponding similarity pat-
terns for the audio search and the video search. In these figures
the horizontal axis is time and the vertical axis is the similarity.
The circles indicate the detected places whereas the horizontal
dotted lines the detection threshold levels.

B. Search Accuracy

In Experiment 2, the search accuracy was evaluated using
another TV recording. Firstly, a 60-m recording of TV broad-
casting was captured twice; once as a source of query signals
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Fig. 7. Part of the similarity pattern (audio,N = 1).

Fig. 8. Part of the similarity pattern (video,N = 1).

Fig. 9. Search accuracy (audio).

and then as a stored signal. The search was repeated 100 times;
in each trial, a signal segment was randomly chosen from
the first recording as a query signal, and the latter signal was
searched through. To check for robustness, white Gaussian
noise was added to the stored audio signal, and MPEG1
compression was performed on the stored video signal.

The results are shown in Fig. 9 and Table III. Here, the ac-
curacy value is the precision rate (or the recall rate) when the
precision rate equals the recall rate by changing thevalue in
(13). That is, for each noise condition, thevalue was fixed to
a certain value during the 100 repetitions, and the value to fix
was adjusted so that the precision rate equaled the recall rate.

Fig. 9 shows the audio search accuracy. It is clear that if the
query duration is longer than 10 s, there are no misses nor re-
dundant detections down to the ratio of 20 dB. It is also
shown that even when the query duration is 2 s, the accuracy
greater than 98% was achieved if the ratio was greater than
25 dB. Table III shows the video search accuracy. If the query
duration is longer than 4 s, there are no misses nor redundant de-
tections even at the 100 kbps. It is also shown that even when the
query duration is 2 s, better than 96% accuracy was achieved.

TABLE III
SEARCH ACCURACY (VIDEO)

TABLE IV
NUMBER OF MATCHES AND SEARCH TIMES IN THE SEARCH INCORPORATING

TIME ORDER WHEN A 15-s QUERY SIGNAL IS SEACHED THROUGH

A 48-h STORED SIGNAL

(a)

(b)

C. Search Speed of Time-OrderAND Search

In Experiment 3, the speed of the search incorporating time
order was measured. The signals used were the same as in Ex-
periment 1; the stored signal was a 48-h TV audio signal and the
query signals were ten randomly chosen 15-s commercials. The
windows were equally divided into two or four subwindows.
The search threshold value was fixed at 0.7.

Table IV lists the experimental results with respect to the
number of matches and the search times measured in CPU time.
It is clear that the sequential method, sequential-break method,
and refinement method are more efficient than the case where
the divided three segments are separately searched. Note that
it is guaranteed that the three methods yield the exactly same
search results. The number of matches for the sequential method
is less than for individual search, because of taking the max-
imum as in (15). The refinement method showed best perfor-
mance as discussed in Section II-F.

Figs. 10 and 11 are graphical similarity patterns in this experi-
ment. When compared with the Fig. 7, where the 15-s window is
not divided into subwindows, the similarity margins in Figs. 10
and 11 are enlarged due to the time-order information incorpo-
rated.

D. Search Speed of ParallelOR Search

In Experiment 4, the search time in the parallelOR-search was
measured.
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Fig. 10. Part of the similarity pattern (audio,N = 2).

Fig. 11. Part of the similarity pattern (audio,N = 4).

Fig. 12. Number of matches and search time for 5-parallelOR search when
15-s query signals are seached through a 48-h stored signal.

The stored signal was a 48-h audio signal captured from TV
broadcasts. The query signals were five randomly chosen 15-s
TV commercials.

As discussed in the previous section, the degree of efficiency
in the proposed parallel search algorithm depends on the sim-
ilarity between the query signals (hereafter, cross similarities).
To control the cross similarities, the query signals were created
by concatenating a common signal and uncommon signals; that
is, by changing the proportion of the common part, the cross
similarities were varied. The stored signal did not include the
signals that were used in creating query signals. The search
threshold value was fixed at 0.7.

The results are shown in Fig. 12, where the dotted line in-
dicates the total number of matches when the five query sig-
nals were separately searched. The number of matches and the
search times in Fig. 12 include those in the preprocessing, that
is, matching among the query signals. As shown in Fig. 12, the
proposed method can find the five query signals with little addi-
tional computational cost in comparison with one-query-signal

TABLE V
FEATURE DISTORTION ABSORPTIONEFFECT

search when the average cross similarity is close to 1. For ex-
ample, when the average cross similarity was 0.83, the number
of matches for five query signals was approximately twice, and
the search time was approximately 1.24 times, as in the one-
query-signal search.

In the region where the average cross similarity was less
than 0.6, the number of matching calculations in the proposed
method was close to that of the separate search. This means
that, in terms of the number of matching calculations, there was
little advantage for the proposed method in this region. The
worst case in the proposed method is theoretically the same as
the one-query-signal search, and in this region the situation was
shown to be close to the worst case. As for CPU time, on the
other hand, even when the cross similarity was as low as 0.36,
the search time (1.44 s) was approximately 35% of the total of
the separate search (4.05 s). This is because the computational
cost for creating the histogram for stored signal was lower in the
proposed parallel search than in the one-query-signal search;
in our implementation, histograms were not created prior to
the search, but created during the search. In this case, letting
stand for the cost of histogram creation in theOR-search, the
cost of that in the one-query-signal search is in average,
where is the number of the query signals.

E. Feature Distortion Absorption Effect

In Experiment 5, the effect of the feature distortion ab-
sorption method was tested. The stored signal was a 60-min
music signal. In an ordinary office room, the signal was played
back through a loudspeaker and recorded with a microphone.
The distance between the loudspeaker and the microphone
was 10 cm or 100 cm. The query signals were 100 segments
randomly chosen from the original music signal. The duration
of the query signals was 10 s. The learning for probability
density distribution for dithering was done using another 5-min
music signal. That is, the 5-min signal was played back and
recorded in the above-mentioned manner, and the difference
between those recorded signals and the original 5-min signal
was modeled using the shift vectors and standard deviation
values for each VQ code. The learning was conducted for
each microphone-to-loudspeaker distance. In the searching,
the query signal feature vectors were first transformed by
the proposed probabilistic dither voting method, and then
compared with the stored signal ones. The definition of the
accuracy was the same as in Experiment 2.

The results are listed in Table V. It is clearly shown that the
proposed method improved the search accuracy. The average
search time was also improved by the dithering; this is because
the threshold margin was enlarged, and thus, the average skip
width was increased, by the dithering.
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F. Experiments Summary

In summary, it was shown that the proposed method, time-se-
ries active search, can detect and locate a specified 15-s audio
or video signal from a 48-h audio or video signal within 1 s on a
PC after the feature extraction and feature quantization (Experi-
ment 1). This speed was achieved by our pruning method, which
reduces the number of matches to (video) and
(audio) in comparison with exhaustive matching, guaranteeing
exactly the same search result as the exhaustive matching. Time-
series active search was also shown to be accurate and reason-
ably robust with respect to audio noise addition and video com-
pression (Experiment 2). Using theAND search algorithm, time
order can be incorporated and thus the threshold margin can be
enlarged with little additional computational cost; for example,
in the refinement method, a four-division-AND search required
approximately the same number of matchings as nondivided
search (Experiment 3). Using theOR search algorithm, on the
other hand, multiple query signals can be efficiently searched
especially when they are similar to each other. When the av-
erage cross similarity was 0.83, the number of matches for five
query signals was approximately twice, and the search time re-
quired was approximately 1.24 times, as the one-query-signal
search (Experiment 4). In addition, the histogram modeling al-
lows feature distortion to be considered in the feature voting
process. When the probability density distribution of the feature
distortion was learned prior to the search, the search accuracy
improved from approximately 60% to 98% in a search using a
signal recorded by a microphone, when a distance between the
microphone and the loudspeaker was 10 cm (Experiment 5).

IV. CONCLUSION

This paper has proposed a search method that can quickly
detect and locate a known query audio or video signal in a
long-running audio or video signal. With the proposed algo-
rithm, signals’ feature vectors are quantized, and histograms are
produced; the similarity between the query signal and stored
signal is estimated by matching their respective histograms. In
so doing, unnecessary matching calculations are avoided by ex-
ploiting the algebraic properties of histograms. The basic algo-
rithm has been extended to incorporate the time order of feature
vectors, and to enable efficient search for multiple query signals
in a parallel way. A method to deal with feature distortions has
also been presented.

The experiments showed that the proposed method can cor-
rectly detect and locate a 15-s commercial in a 48-h recording
of TV broadcasting within 1 s, once feature vectors are calcu-
lated. It was also shown that the method is robust with respect
to the white Gaussian noise addition to the audio signal down to
the ratio of 20 dB, and MPEG-1 video compression of the
video signal at 100 kbps, when the query signal was 10 s.

The applications of the proposed method will include TV
commercial monitoring systems and music information retrieval
systems from a broadcasted music fragment. We also anticipate
that it is applicable to Web search engines that are searchable by
an audio or video query, while most multimedia search engines
on the World Wide Web have been based on symbolic informa-
tion such as automatically recognized speech contents [27].

Future research includes the development of a method to deal
with even worse-quality audio or video signals, such as an audio
signal transmitted over telephone lines. Such a method is ex-
pected to further broaden the application domain of the simi-
larity-based signal searching technique.

APPENDIX A
PROOF FOR(15)

When we let denote the length of divided
subwindows, the number of votes in the histogram created over
the original window and that in the histograms created over the
divided subwindows must be the same. This is expressed as

(29)

Now each subwindow is adjacent, and therefore, the following
inequality holds:

(30)

where . This is equivalent to

(31)

and this leads to (16). (q.e.d.)
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