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) Abstrgct—Thls paper proposes a quick method Of.S.ImI|aI’I.ty- gigngl window stored signal {ime

ased signal searching to detect and locate a specific audio or N \\ —
video signal given as a query in a stored long audio or video gc H T a\u:
signal. With existing techniques, similarity-based searching may %g' 2 T R E:i
become impractical in terms of computing time in the case of 28 % A\
searching through long-running (several-days’ worth of) signals. A 23 — Y \\
The proposed algorithm, which is referred to as time-series L

active search, offers significantly faster search with sufficient ho YR ' A s'kip width

accuracy. The key to the acceleration is an effective pruning i similarity
algorithm introduced in the histogram matching stage. Through ﬂ-l'“ m|- @ture vector S
the pruning, the actual number of matching calculations can be = histograms ]‘

reduced by 200 to 500 times compared with exhaustive search
while guaranteeing exactly the same search result. Experiments
show that the proposed method can correctly detect and locate a
15-s signal in a 48-h recording of TV broadcasts within 1 s, once L o
the feature vectors are calculated and quantized. As extentions of 1 hough the range of applications for similarity-based search

the basic algorithm, efficientAND/OR search methods for searching may seem narrow compared to content-based retrieval based on

for multiple query signals and a feature dithering method for high level information, this is actually not the case: applications,

Fig. 1. Block diagram of the proposed search algorithm.

coping with signal distortion are also discussed. such as detection and statistical analysis of broadcasted music
Index Terms—Audio fingerprinting, audio search, multimedia Or commercials, or copyright management on the Internet, are
databases, multimedia information retrieval, video search. possible. Just as high-speed text search algorithms have come

into widespread use, quick search algorithms for audio or video
signals may too become basic technologies of handling multi-
media information.

HIS paper proposes a method for searching quickly A conventional approach for the similarity-based search of

through a long audio or video signal (termeds®@red audio or video data (hereafter time-series data) is the signal
signa)) to detect and locate a known reference audio or videetection technique based on correlations of data itself or on
signal (termed auery signa). feature vectors extracted from the data [10]. However, with

Audio and video data from radio, television, databases, this technique, searching may become impractical in terms of
on the Internet has been a source of recent research interestputing time in the case of long-running (e.g., several-days’
Among the many studies that have targeted audio or video imerth of) stored signals or many reference signals. Search
formation search, most have dealt with so-called content-basgbed might be improved through a rougher matching, but that
retrieval by means of indexing and classifying audio or videwould inevitably reduce search accuracy and reliability.
information. For example, in image or video retrieval tasks, a The algorithm proposed in this paper offers significantly
major issue has been constructing efficientindexes [1]-[4]. Siaster search with sufficient accuracy. The key to the accel-
ilarly, in audio retrieval tasks, most works have been based efation is an effective pruning algorithm introduced in the
high level information such as audio content classification (e.dgature matching stage using feature histograms. Through the
indexes for speech segments and nonspeech segments), re@@gﬂng, the actual number of matching calculations is reduced
nized SDEEChES, or transcribed musical pieces [5]_[9] by 200 to 500 times Compared with exhaustive search while
In contrast, this study concerns a similarity-based searéRathematically guaranteeing the same search result.

which is the search of and retrieval from unlabeled audio or The rest of this paper is organized as follows. Section Il de-

video archives based solely on a signal similarity measure. SCribes the basic algorithm, and discusses some extension to
efficient AND/OR search and feature distortion absorption. Sec-

tion lll evaluates the proposed algorithms under realistic cir-
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signal. The windows are then applied to both the query-signablesignate the video frame number ghthe subimage; =
and stored-signal feature vectors. The feature vectors over the.., W), we express the video feature vecidp) as
windows are classified into a certain number of types, and

the number of occurrences of each feature type is counte) = (z1.(p), z14(p), z16(p), - - ., Tjc(p),

to create the histogram. The window length is the same as T (D), Tw o (p), Twi(p))  (6)
the query signal duration, though we will later discuss cases

where the window is divided into multlple small WindOWSWherec denotes either(red),g (green)'ob (b|ue)The number

Thirdly, similarity between the query-signal histogram angf subimagedV is empirically chosenz;. is the normalized
stored-signal histogram is calculated. When the similarigpior (red, green, or blue) value given as

exceeds a threshold value chosen in advance, the query signal

is considered to be detected and located in the stored signal. 2i(p) = Tje(p) — min; gic(p) %
In the last step, the window on the stored signal is shifted T max; gie(p) — ming gie(p)

forward in time and the search proceeds. We call this algorithm

“time-series active search.” where

1
B. Features Yic(p) = 1A > Ygelp) (8)
Various types of features have been proposed in the audio a€li(p)

and image retrieval field. The widely-used audio featur%hereli(p) is a set of pixels in thé-th subimage} - | stands for

include zero-crossing rates of waveforms [11], [12], short-timg |\ mber of pixels, ang,.(p) denotes the color value of the

frle?’queilzy spe(;:truml,flinear predictive colding EP?ﬁiCie”slg@xel q. The color information is employed because it has been
[13], [14], and mel-frequency ce_pstra coe 'C'ents ( uccessfully applied in visual object recognition [17], [24].
[14]-[16]. On the other hand, the image features include color

distribution [17], [18], shape features [19], and spatial featur
such as discrete cosine transformation (DCT) coefficients [20]
and wavelets [21]. In this paper, a histogram is a frequency distribution of the
Among those, our preliminary experiments showed that tfi@ature vector occurrences over the window. The frequency
short-time frequency spectrum calculated by a bandpass filigtribution is obtained by classifying the feature vectors
bank and the color distribution provide sufficient accuracy féccording to a certain vector quantization algorittm and
our similarity-based signal search task [22], [23]. Therefore, §8unting the number of occurrences for each quantized code.
computationally inexpensive features, the short-time frequenythe vision field, histograms have been employed as image
spectrum and the color distribution are specifically introducéfodels by many researchers; for example, Svetial. have

Histogram Modeling

here, as audio and video features, respectively. shown that the histogram space provides sufficient inter-object
Audio feature vectoif (k) is written as discrimination in vision [17].
Since the feature vectors are not uniformly distributed in the
Fk) = (fr(k), f2(k), - .., () (1) feature space, feature vector density should be considered in

the classification process in order to efficiently represent signals
wherek is the sampled time. The elemefy(k) is the normal- with a histogram. Thus, we use the Linde—Buzo-Gray (LBG) al-

ized short-time power spectrum, which is given as gorithm to create a quantization codebook. The LBG algorithm
enables the number of codes assigned in the feature space to re-
(k) = a(k)Y;(k) ) flect the feature vector density; that is, the number of codes for
A regions where feature vectors are dense becomes greater than
Y;i(k) = Z g2(1), 3) that for regions where they are sparse. Then, in the quantization
t:k—]\l-{—l( I stage, an input feature vector is assigned the nearest code in the
k=IM (I=1,2,..)) (4) codebook.

Histogramh is then defined as

wherey;(t) is the output waveform of bandpass filteat time
t, M the time support of the feature vectdy, the number of
frequency channels, and k) a normalization constant defined

h:(h17h27"'7hl7"'7hL) (9)

whereL is the number of histogram bins, i.e., the codebook size

as in the above mentioned vector quantization processhaisdhe
k) — 1 5 number of feature vectors classified iritth quantization code
a(k) = max; (Y;(k))’ ®) observed over the window. As mentioned earlier, the typical

window length is the query signal duration. For simplicity, how-
Bandpass filtey; (¢) can be implemented as a 2nd-order infiever, we will not explicitly express the window length in math-
nite impulse response (lIR) filter and thus it is computationallgmatical notations for histograms unless specifically needed.
inexpensive. The similarity between the query- and stored-signal his-
The video feature vector is based on colors. To extract it, ttkegrams over the windows can be determined in several ways,
image in each video frame is divided irid subimages. Letting for example, by using thé; and L, distance measures. Here,



350 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 3, SEPTEMBER 2003

we employ histogram intersection, which is equivalent to the query signal stored signal
L, distance measure. The similarity is defined as b window window time
L g fr :é \ E \us g
1o ge | \
Slho.hn) = 5 > mintharba) 10 2| ol
I=1 23 25 - !
F=
wherehg and hr are the histograms for the query and the s t
. . . . . division
stored signal respectively, adalis the window length. The his- division
togram intersection measure is used because it is computation-
ally simple, and it has been used successfully in visual object % E E
detection [17].
hoy  ho, hoy, hr, hr, hRygi,

D. Window Skipping

As the window for the stored signal shifts forward in time, ﬂ-[ ﬂ[ 'IT[ TI-[ _‘T|— T[[

similarity based on the query- and stored-signal histograms
shows a certain continuity from one time step to the next. The
time-series active search takes advantage of this by computing
an upper bound of the similarity measure as a function of the
time step and skipping all intermediate time-step similarity
evaluations until this upper bound exceeds the detection
threshold. search result
The upper bound o8(hg, hr) is

feature histograms )

calculation |

skip width

Fig. 2. Search incorporating time order.
N9 — N

§"(hq,hr(n2)) = S(hq,hr(n1)) +

(11

D ) signal and stored signal. For this reason, the search threshold

wherehg(ni) andhg(n») are the histograms created by théhould be s_et_ ac_corQing to _the_query signal and stored signal.
stored-signal window for frame numbers andn.. Using (11), When the similarity distribution is modeled by the mearand

we can derive the skip width for the window straightforwardlyStandard deviations, we determine the search threshad,

such that
w:{LD(a—S)J-I—l, if S<4, (12)

1, otherwise 0=m+co (13)

wherew is the Sk|p width, anqu means the greatest integraWherec is an empirically determined constant. The values of
value less than. It should be noted that it is guaranteed that we ando are calculated preliminarily for each query signal by
will not miss any sections that will give similarity values greate$ampling stored-signal feature vectors with respect to the query
than#, even if we skip the widthv given by the (12). This is signal. In (13),c means a distance from the similarity distribu-
because (ll) states thsitcan not be greater thahbefore the tion, and thus, we can take the distribution into account. Equa-
window moves forward by the width. tion (13) implies the search for segments in stored signals that
In the sense that the proposed method accelerates the se@figi much-higher-than-average similarity to the query signal.
guaranteeing that nothing is missed, the method is similar to ) .
the quick string matching methods such as Boyer—Moore [25] S€arch Incorporating Time Order
and Knuth—Morris—Pratt [26] algorithms. However, the idea of Since the histogram introduced here is an accumulated rep-
skipping here is different from those algorithms in that our atesentation of feature vectors over the window, the histogram
gorithm is based on the similarity upper bound and property dbes not reflect the time order of feature vectors. This may

histograms. sometimes cause insufficient discrimination performance in the
. o search. However, the time order can be considered by dividing
E. Detection Criterion windows into a certain numbéVy;, ) of subwindows. In such

The basic assumption here is that the similarity is not usuafgses, similarity is firstly calculated for each query- and stored-
very high, according to a certain distribution, but outstanding§/gnal hlst.og_ram_ pairin 'the corresponding time positions, and
high at the positions where the query signal can be considef8gn the similarities are integrated, as shown in Fig. 2.
to be detected on the stored signal. For similarity integration, we consider taking the minimum.

To decide detection criterion for similarity, it is essential td he minimum operation corresponds to theib” search with
model the similarity distribution. However, without simplisticrespect to the individual subwindows. Thed search finds the
and unrealistic assumptions, it is difficult to obtain the similaritgections where the similarities for all of the multiple query sig-
distribution in an analytic form. Therefore, we model the distrPals @1, - . ., @n,,, exceed a given threshold value. When the
bution on an experimenta| basis. Slmllarlty S for the total window is defined as

Preliminary experiments showed that histogram intersection

offered different statistical properties depending on the query §= mjin(si) (14)
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whereS; means the similarity foj-th subwindow, the problem h on S he

is to find the section wheré exceeds a threshold value. E} o E
A straightforward method for this search is to sequentially

calculate S;’s one by one, which we call the “sequential ‘Semw

method”. Lettingw; be the skip width for thg-th subwindow ho Seo

when the original window is at a current position, we express m

the skip width for the original window as
Fig. 3. Relations between the similarities.
w = max(w;). (15)
J
using (19). This means that, under the above mentioned assump-

Note that we can take the maximum oyenather than the min- i, “the refinement method should be more efficient than the
imum. This is because (14) states tlSais always equal to or sequential-break method.

less thary if at least one of the5;’s is equal to or less than
¢, meaning thaiS cannot be greater thehwhile the window G, parallel Search

moves forward by any less than the maximumugfwith re- Typical applications of the proposed search method are as-

spect toj. . . o
In reality, it is often more efficient to stop matching and Skir§,umed to include counting the occurrences of specific commer

the original window as soon as & that does not exceef Cials in TV broadcasts and searching the Internet for copyright

is found, rather than to calcula for all j. We call this the management purposes. In such applications, searching for mul-
“ . " ’ tiple query signals is often needed, and this motivates our re-
sequential-break method. . : :
Meanwhile, when the subwindows are adjacent to each othseerarCh on an e_ff|C|ent parallel sgarch|ng method for multiple
(that is, when the original window is divided into subwindowdUS"Y Signalis given at the same time.
as mentioned above): Suppose_ we havéy query signals); (7 = 1,2,.. .,N),_
' each of which creates the histogrég;, and we have the his-
Sorg > min(S;) (16) t(_)gramh R cre:?\ted _fqr the current window position on the stored
signalR. For simplicity, we assume that;, the number of total
votes in the histogranhg;, is equal for allj and isD. Now
we calculateSrgn,, the similarity between the:-th (j = m)
query-signal histograrh,, and stored-signal histograiir,
using (10). We are then interested in knowing the upper bound
of the similaritySro; without actually matching the histograms

Sorg > 5. (17) hrandhg; (j # m). The upper limit ofSrq; is given by

holds, whereS,,,, is the similarity for the original window and
S; is the similarity for one of the divided windows (see Ap
pendix A for the proof). Note that,,, does not always equal
S;in fact, (14) and (16) lead to

Equation (17) means that the section where the similarity ex- SrQj £ 1—|Srgm — Somq;l. (21)

cgeds the threshold n the search with respgct o the dIV'decil'his inequality is derived as follows. Fig. 3illustrates the rela-
window can not be skipped by the search with respect to tBe

- . . . n between the similarities. we have j rform
original window. Hence, one can at first search with respect gn between the similarities. Suppose we have just performed a

o, .- : .
the original window, and if the similarity exceeds the thresholtlainmchlng calculation between theth query signal and astored
then search with respect to the divided windows. We call this

Signal and obtainedrq,,. We assume that..q; has been
o . calculated for alln andj prior to the search process. We con-
scheme the “refinement method. . . )
. ST . . sider the following two cases:
At this point, it is interesting to know which of the two ) .
: ' 1) Case ISrom < Somq;: Supposing that the:-th query
methods, the sequential-break method or the refinement one,.iS . ; - . .
- L signal andj-th query signal are very similar will help in under-
more efficient on average. We let,., denote the skip width for . .
- . ..~ standing this case.
the original window, and compare,,, andw;. For simplicity

. ) . Now we introduce a new symb@l that refers to a set whose
of notation, here we consider the case wheye < 6 and omit o .
. S ) . . members are the individual feature vectors voted to a histogram.
ceiling operation in (10); thus,,, is written as

Then,{H,, N Hr} denotes a set comprising the elements of

Worg = D(0 — Sorg)- (18) Hom (t_ha_t isj the feature _vectors voted #fy,,,,) contributing
to the similarity toH . Letting|Hg.,, N Hg| be the number of

Equation (18) is calculated as members of the set, (10) can be written as

Naiv |HQm n HR| = DSRQm. (22)

Worg = $_ (1= 8;)D; — (1= 0)D (19)

=0 In the same way,
where D; is the length of the subwindows. If we assume that |Hqo; N Hr| = DSgrq; (23)
the the similarities are uniformly distributed with respect to time
(thatis,S; = S.g = ), we obtain holds.

Now Srom < Somgq;, and the relationship shown in Fig. 4
Worg —wj = (0§ — S)(D —D;) >0 (20) holds. The left panel of Fig. 4 shows the relationship between
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Hy Hg

Om

Fig. 4. Relations between histograms (1).

Qe Feature vector
Hp Hy
P Voting vector
Hy, Hy,
I~ I~ . e
Fig. 6. Feature vectors voted with dithering.

5) Update the skip widths for all the query signals based on

Fig. 5. Relations between histograms (2). the obtained similarity value.

6) Return to Step 3.

Hg,, and Hp, which was calculated by actual matching. Now In this scheme, the number of matching calculations in the
we consider the case wheéHg; N Hy| is maximized with re- search process is guaranteed to be less than or equal to the case
spect to the relationship betwe#fiy, ; andHy,,,,. The conditions where the query signals are separately matched with the stored
are 1) all elements ofHg,, N Hr} are included i, and 2) signal. WhenD); is not necessarily equal for all one can let
all elements ofl; except for the elements i, N He;} D be a minimum ofD;, and then the above discussion is valid
(shadowed area in Fig. 4) contribute to increase the similarityfi@ the segments with the lengib.
Hp, as illustrated in the thick line in the right panel of Fig. 4.
Mathematically, the condition is written as H. Feature Distortion Absorption

In realistic situations, signals can be affected by noise or dis-

|Hoj N HR| < [Hom N Hr| + (D — [Hom N Hojl)- (24) tortion. For example, audio signals played back through loud-

Equations (22) and (23) lead to speakers and recorded with microphones, or extremely com-
pressed to a low bit rate, can be considerably different from the
Srqj < Srom + (1 = Somq;)- (25) original signals. To deal with such signal differences or distor-

) ] tion, here we propose a feature distortion absorption method.
2) Case Brom 2 Sgme;: Supposing thatthei-th query | the method, the observed feature vecfois voted to a

signal andj-th query signal are quite unsimilar will help in un-pisiogram as a probability density distributi®hrather than a

derstanding this case. _ _ _ single deterministic vector, as illustrated in Fig. 6. Assuming
~ Similar discussion to the Case 1 gives the relationship shoyy can be sampled by a finite number of random vectors ac-
in Fig. 5. Thus, the condition fdit; N H | being maximized .4ding to the distribution, feature vector voting is transformed

is 1) The all elements dfffl; N Hom } are included int g and — intg voting possibly-multiple dithered vectofs that are given
2) all elements off ; except for the elements §H g, N Hr} by

(shadowed area in Fig. 5) contribute to increase the similarity to
Hg;. Thatis fi=f+v (i=12,...,d) (28)

|Ho; N Hp| < [Hom N Hq;jl + (D — |Hom N Hr|) (26) wherew; is a random vector andis the number of votes for a
feature vector. We call this “probabilistic dither voting.”

d, theref . o . .
an erefore The problem is then the estimation of the probability density

Sro; < Somaj + (1 — Srom)- (27) distribution that maximizes the similarity value given by (10)
when the original signals are identical. This is done by intro-
Equations (25) and (27) are written as (21). ducing a learning stage prior to the search.
This leads to a parallel search algorithm that comprises thein the learning stage, a pair of signals, one before and the
following steps. other after the feature distortion, are prepared. The latter signal
1) Asapreprocessing, calculate similarities for all combinds obtained by processing the original signal actually by the
tions of query signals and store them. target distortion model; for the learning of low-bit-rate compres-
2) Locate the current position at the first frame of the storesdon, for example, the original signal is compressed at a low bit
signal (this is the start of the search process). rate to obtain the distorted signal.

3) Choose the query signal whose skip position is closestBy comparing the features of those two signals on a
to the current position, and update the current position fame-by-frame basis, the distortion can be learned. That is,
that skip position. the shift of feature vectors due to the distortion is statistically

4) Match the chosen query signal with the stored signal larned by subtracting the original feature vectors from the
the current position to obtain a similarity value. corresponding distorted feature vectors.
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TABLE | TABLE 1l
EXPERIMENTS SEARCH SPEED WHEN A 15-s QUERY SIGNAL WAS SEARCHED
THROUGH 48-h STORED SIGNAL
Exp. | Bvaluation viewpoint Feature Feature ~ CPU time* # matches (reduction ratio)
1 Search speed Audio, Video B
Audio  0.81 (69.46) s 34561  (1/501)

2 | Search accuracy Audio, Video Video  0.17 (22.31) s 17793 (1/291)
3 | Search speed of time- | Audio *In (), the CPU time in case of exhaustive

order AND search search (the case where w is fixed to 1) is
4 | Search speed of parallel | Audio given.

OR search
5 | Feature distortion ab- | Audio In the video feature extraction, the video signal (NTSC) was

sorption effect captured at 29.97 frames/s without compression. The capture

size was 166 120 pixels. Each frame image was divided into

In our experimentation, the learning is done for each hi&—6 Zublmage(SW = 16) and feature vectors were calculated as
togram bin (that is, each vector quantization code), and fe'Q—I( );j' . h d distinquish .
ture distortion is modeled by a combination of a shift and the N discussing search speed, we diStinguish: preprocessing

Gaussian distribution in the feature space. That is, two paral o searching. The preprocessing comprises processes that

ters, the shifting vector and the standard deviation of the nornf&" be done before a query signal is given. These are 1) feature

distribution for each vector quantization code, are to be learn d{tracnon for the stored signal anq 2) yectpr quantization
The multiple kinds of distortion can be taken into account b r the.stored signal. Aftgr a query signal is given, 3} feature
preparing a query signal for each distortion type and searchi gtractpn for a query 5'9”"?‘" 4) vector quant|zat|oq for the
them in parallel. In such a case, we can expect that the paraﬂ Fry 5'9.”‘”‘" and 5) matchmg between the query signal and
search algorithm described in Section II-G is effective, becau$ ch section of the stored signal, are performed. When we refer

the query signals being searched in parallel originate in the Samesga(rjcfh stphee?ft%r s;earch t;mhe_, it specifically means the time
signal, and are likely to be similar to each other. needed or the fitth step, matching.

As the number of votes for representing the probability dis- From the fr:aCtt'ﬁal vt|:wpont1t,hhovx{evelr, the t|mte nte(?rdhed Cfgu
tribution in the feature space increases, the distribution is beteépcessesdod (;.-r fant € m? c ,:.ng '1‘? asol|rrr]1p9r arl1 ' e53 5
represented, while the computational cost of voting is also in'?eS needed for feature extraction for a 1-n signal were 5o

creased. If the query signal is sufficiently long in duration, how " the audio case and 150.2 s in the video case. The CPU

ever, only one vote for each feature frame is sufficient, becaL} es needed_ for vector quantization for a 1'h signal were 1623
or the audio feature and 62.7 s for the video feature. This

the feature occurrence is accumulated in creating histogral’?l . that feat tracti d ¢ tizati ;
In our experimentation, only one vote is cast for each featufeoans that fea gre extraction and vector quantization requires
frame. approximately 2% of the signal duration time in the audio case

and 6% in the video case.
The search time depends on the signals to be matched, the
detection threshold, and the number of histogram bins. Table Il
Five types of experiments were conducted (Table I). Expeghows the CPU time averaged over ten query signals; here, the
ments 1 and 2 were conducted to evaluate the basic performagearch threshold was fixed at 0.7 and the number of histogram
of the proposed method, and Experiments 3, 4, and 5 to evaluigites was 512 for both the audio and the video features. It was
the extensions. All the measurements were done on a PC (Reasrified that all the search results were correct, which means that

I1l. EXPERIMENTS

tium 111 933 MHz, Linux). there were neither redundant detections nor misses.
It is shown that the proposed method takes less than 1 s to
A. Search Speed search through the stored 48-h signal both in the audio case and

In Experiment 1, a video recording of 48 h of TV broadln the video case. The number of matching calculations was
casting was the stored signal. The query signals were ten régduced to approximately/500 (audio) or1/290 (video) in
d0m|y chosen 15-s commercial messages, Captured from otﬁ@mparison with the exhaustive search. The CPU time was also
TV recordings. Thus, the task was to detect and locate specfiitortened byt /85 (audio) or1/130 (video).
commercial messages from two-days’ worth of a TV recording. Figs. 7 and 8 show a part of the corresponding similarity pat-
Each commercial message was p|ayed fourto e|ght times durtﬁg'ls for the audio search and the video search. In these figures
the stored 48 hours. the horizontal axis is time and the vertical axis is the similarity.

In the audio feature extraction, the audio track (VHS Hi-Ef he circles indicate the detected places whereas the horizontal
format) of the recording was first digitized at 11.0 kHz samplingotted lines the detection threshold levels.
frequency and 16 bit quantization accuracy, and then analyzed
by a seven-channéN = 7) 2nd-order IR bandpass filter bankB: Search Accuracy
(the filter @ = 10). The filter center frequencies were equally In Experiment 2, the search accuracy was evaluated using
spaced in alog frequency scale. The feature vectors as descriteother TV recording. Firstly, a 60-m recording of TV broad-
in (2) were calculated every 10 ni3/ = 110). casting was captured twice; once as a source of query signals
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TABLE Il
SEARCH ACCURACY (VIDEO)
Query Accuracy [%)]
duration [s] | Original 1 Mbps 100 kbps
2 99.3 96.4 96.4
18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 00:00 3 100 99.0 99.0
. L . 4 100 100 100
V . —
Fig. 7. Part of the similarity pattern (audi&y;, = 1). 10 100 100 100
TABLE IV

NUMBER OF MATCHES AND SEARCH TIMES IN THE SEARCH INCORPORATING
TIME ORDER WHEN A 15-s QUERY SIGNAL |S SEACHED THROUGH
A 48-h STORED SIGNAL

Method Nain =2
# matches CPU time
18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 00:00
Individual 99289 1.57 s
Fig. 8. Part of the similarity pattern (videdy;, = 1). Sequential 93124 1.15s
Sequential-break 51449 0.88 s
Refinement 34836 0.83 s
accuracy (precision=recall) [%)] @
a
100 i | S | SR | CTee | SN ga U S
Method Naiv = 4
# matches CPU time
90
Individual 333630 341s
ion- Sequential 302960 2.27s
uery duration:
query ] Sequential-break 84326 0.93 s
80.. -~ 2 sec Refinement 32361 0.81s
-0~ 4 sec
—e- 10 sec J (b)
704 | . . . C. Search Speed of Time-Ord&d Search
clean 40 30 20 10 S/N[dB]

In Experiment 3, the speed of the search incorporating time
order was measured. The signals used were the same as in Ex-
periment 1; the stored signal was a 48-h TV audio signal and the
guery signals were ten randomly chosen 15-s commercials. The
and then as a stored signal. The search was repeated 100 tify@sdows were equally divided into two or four subwindows.
in each trial, a signal segment was randomly chosen fropme search threshold value was fixed at 0.7.
the first recording as a query signal, and the latter signal wastable IV lists the experimental results with respect to the
searched through. To check for robustness, white Gaussfiinber of matches and the search times measured in CPU time.
noise was added to the stored audio signal, and MPEG]s clear that the sequential method, sequential-break method,
compression was performed on the stored video signal.  and refinement method are more efficient than the case where

The results are shown in Fig. 9 and Table Ill. Here, the aghe divided three segments are separately searched. Note that
curacy value is the precision rate (or the recall rate) when thes guaranteed that the three methods yield the exactly same
precision rate equals the recall rate by changingcthialue in  search results. The number of matches for the sequential method
(13). That is, for each noise condition, thealue was fixed to is less than for individual search, because of taking the max-
a certain value during the 100 repetitions, and the value to fimum as in (15). The refinement method showed best perfor-
was adjusted so that the precision rate equaled the recall ratmance as discussed in Section II-F.

Fig. 9 shows the audio search accuracy. It is clear that if theFigs. 10 and 11 are graphical similarity patterns in this experi-
guery duration is longer than 10 s, there are no misses nor ment. When compared with the Fig. 7, where the 15-s window is
dundant detections down to ti#g N ratio of 20 dB. It is also not divided into subwindows, the similarity margins in Figs. 10
shown that even when the query duration is 2 s, the accuradyd 11 are enlarged due to the time-order information incorpo-
greater than 98% was achieved if &V ratio was greater than rated.

25 dB. Table Il shows the video search accuracy. If the quer

duration is longer than 4 s, there are no misses nor redundantde-S€arch Speed of Parallek Search

tections even at the 100 kbps. Itis also shown that even when thén Experiment 4, the search time in the paratielsearch was
query duration is 2 s, better than 96% accuracy was achievedheasured.

Fig. 9. Search accuracy (audio).
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18:48 TABLE V
19:36 238 s FEATURE DISTORTION ABSORPTIONEFFECT
Microphone Accuracy [%] CPU time [ms]
distance On Off On Off
10 cm 98.3 59.7 33 47
18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 00:00 100 cm 97.3 | 608 36 42

. o . On: feature dithering on, Off: feature dithering off
Fig. 10. Part of the similarity pattern (audi&a;v = 2).

search when the average cross similarity is close to 1. For ex-

18 o Ponas 7 ample, when the average cross similarity was 0.83, the number
-------------------------------------------------------------------------------------------------- of matches for five query signals was approximately twice, and
the search time was approximately 1.24 times, as in the one-
query-signal search.

In the region where the average cross similarity was less
than 0.6, the number of matching calculations in the proposed
18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 00:00 method was close to that of the separate search. This means

_ o _ that, in terms of the number of matching calculations, there was
Fig. 1. Partof the similarity pattern (audiy;, = 4). little advantage for the proposed method in this region. The
worst case in the proposed method is theoretically the same as
CPU time numt;?r of the one-query-signal search, and in this region the s_ituation was
[sec] matchings 4. shown to be close to the worst case. As for CPU time, on the
] number of matchings in separate matching | *10 ) other hand, even when the cross similarity was as low as 0.36,
od the search time (1.44 s) was approximately 35% of the total of
the separate search (4.05 s). This is because the computational
cost for creating the histogram for stored signal was lower in the
proposed parallel search than in the one-query-signal search;
in our implementation, histograms were not created prior to
the search, but created during the search. In this case, letting
stand for the cost of histogram creation in the-search, the
cost of that in the one-query-signal searchnigin average,
wheren is the number of the query signals.

|

w
o
L
T
-
o

—_
o

2.0

(8,1

—a— number of
matchings

=0=CPU time
0 I I 1 I I T T T
0.0 0.2 0.4 0.6 0.8 1.0
Avg. cross similarity In Experiment 5, the effect of the feature distortion ab-
sorption method was tested. The stored signal was a 60-min
Fig. 12. Number of matches and search time for 5-pe}ra|ﬂesearch when music SignaL In an Ordinary office room, the Signa| was p|ayed
15-s query signals are seached through a 48-h stored signal. back through a loudspeaker and recorded with a microphone.
The distance between the loudspeaker and the microphone
The stored signal was a 48-h audio signal captured from T™as 10 cm or 100 cm. The query signals were 100 segments
broadcasts. The query signals were five randomly chosen 1Baadomly chosen from the original music signal. The duration
TV commercials. of the query signals was 10 s. The learning for probability
As discussed in the previous section, the degree of efficiendgnsity distribution for dithering was done using another 5-min
in the proposed parallel search algorithm depends on the simdsic signal. That is, the 5-min signal was played back and
ilarity between the query signals (hereafter, cross similaritiesgcorded in the above-mentioned manner, and the difference
To control the cross similarities, the query signals were createdtween those recorded signals and the original 5-min signal
by concatenating a common signal and uncommon signals; thets modeled using the shift vectors and standard deviation
is, by changing the proportion of the common part, the crosalues for each VQ code. The learning was conducted for
similarities were varied. The stored signal did not include treach microphone-to-loudspeaker distance. In the searching,
signals that were used in creating query signals. The seatbh query signal feature vectors were first transformed by
threshold value was fixed at 0.7. the proposed probabilistic dither voting method, and then
The results are shown in Fig. 12, where the dotted line istempared with the stored signal ones. The definition of the
dicates the total number of matches when the five query sigecuracy was the same as in Experiment 2.
nals were separately searched. The number of matches and thehe results are listed in Table V. It is clearly shown that the
search times in Fig. 12 include those in the preprocessing, thabposed method improved the search accuracy. The average
is, matching among the query signals. As shown in Fig. 12, teearch time was also improved by the dithering; this is because
proposed method can find the five query signals with little addike threshold margin was enlarged, and thus, the average skip
tional computational cost in comparison with one-query-signelidth was increased, by the dithering.

L N N A N N I I N N N

I N I I I O |

0

E. Feature Distortion Absorption Effect
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F. Experiments Summary Future research includes the development of a method to deal

In summary, it was shown that the proposed method, time-é’léi-th even worge—quality audio or vid(_ao signals, such as an gudio
fies active search, can detect and locate a specified 15-s atiggi@! transmitted over telephone lines. Such a method is ex-
or video signal from a 48-h audio or video signal within 1 s on BeCted to further broaden the application domain of the simi-
PC after the feature extraction and feature quantization (Expdatity-based signal searching technique.
ment 1). This speed was achieved by our pruning method, which
reduces the number of matches 1291 (video) and1/501 APPENDIX A
(audio) in comparison with exhaustive matching, guaranteeing PROOF FOR(15)
exactly the same search result as the exhaustive matching. TimeA'hen we letD, D-, ..., Dy denote the length of divided
series active search was also shown to be accurate and reasabwindows, the number of votes in the histogram created over
ably robust with respect to audio noise addition and video conre original window and that in the histograms created over the
pression (Experiment 2). Using th&D search algorithm, time divided subwindows must be the same. This is expressed as
order can be incorporated and thus the threshold margin can be
enlarged with little additional computational cost; for example, DSorg = D151+ DS + -+ + DN Sn. (29)
in the r§f|nement method, a four-divisiamd ;earch requm'eq Now each subwindow is adjacent, and therefore, the following
approximately the same number of matchings as nondmdt;l - )

. . _ mequality holds:
search (Experiment 3). Using tloR search algorithm, on the
other hand, multiple query signals can be efficiently searched 5 >
. L org Z (30)
especially when they are similar to each other. When the av- Di+Dy+---4+Dxn
erage cross similarity was 0.83, the number of matches for fiv

Where(Smin = min;(S;)). This is equivalent to
query signals was approximately twice, and the search time re- (Smin = ming(;)) q

Dlsmin + DQSmin +---+ DNSmin

quired was approximately 1.24 times, as the one-query-signal Sorg > Smin (31)
search (Experiment 4). In addition, the histogram modeling al-

lows feature distortion to be considered in the feature votirild this leads to (16). (g.e.d.)
process. When the probability density distribution of the feature

distortion was learned prior to the search, the search accuracy ACKNOWLEDGMENT

improved from approximately 60% to 98% in a search using aThe authors thank Prof. K. Ishii and Dr. N. Sugamura for their
signal recorded by a microphone, when a distance between H@ﬁp and encouragement.

microphone and the loudspeaker was 10 cm (Experiment 5).
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