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SUMMARY This paper presents an approach for cross-pose face recog-
nition by virtual view generation using an appearance clustering based local
view transition model. Previously, the traditional global pattern based view
transition model (VTM) method was extended to its local version called
LVTM, which learns the linear transformation of pixel values between
frontal and non-frontal image pairs from training images using partial im-
age in a small region for each location, instead of transforming the entire
image pattern. In this paper, we show that the accuracy of the appearance
transition model and the recognition rate can be further improved by better
exploiting the inherent linear relationship between frontal-nonfrontal face
image patch pairs. This is achieved based on the observation that variations
in appearance caused by pose are closely related to the corresponding 3D
structure and intuitively frontal-nonfrontal patch pairs from more similar
local 3D face structures should have a stronger linear relationship. Thus
for each specific location, instead of learning a common transformation as
in the LVTM, the corresponding local patches are first clustered based on
an appearance similarity distance metric and then the transition models are
learned separately for each cluster. In the testing stage, each local patch for
the input non-frontal probe image is transformed using the learned local
view transition model corresponding to the most visually similar cluster.
The experimental results on a real-world face dataset demonstrated the su-
periority of the proposed method in terms of recognition rate.
key words: face recognition, pose invariant, clustering, local view transi-
tion model

1. Introduction

Due to its wide range of potential real-life applications such
as identity authentication, intelligent surveillance, human-
computer interface and so on, face recognition has been
one of the most active research topics in the biometric field
within the computer vision and the pattern recognition com-
munities [1]. Unlike other biometric techniques such as fin-
gerprint recognition, palm print recognition or iris recog-
nition, face recognition is inherently a passive and non-
intrusive technique that has the advantage of not requiring
cooperative subjects. That is to say, a practical face recogni-
tion system is supposed to have the ability to recognize the
face of an uncooperative subject in an arbitrary situation and
uncontrolled environment setting, even without the notice
of the target subject. This advantage of environment setting
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generality also poses great challenges to the problem of face
recognition because as the viewing condition changes, the
captured face appearances might vary too drastically to be
easily identified. Within the past several decades, many face
recognition methods have been proposed. However, most of
those traditional methods can successfully recognize faces
only when face images are captured under a constrained
condition and a controlled environment, for example rec-
ognize frontal faces with normal expressions and typical in-
door illuminations, which are usually unrealistic in many
real-life application scenarios. Usually the performance of
these traditional methods will degrade greatly when face im-
ages are captured in unconstrained conditions caused by fac-
tors such as varying viewpoints, illumination changes, oc-
clusions, aging, expressions and poses.

This paper studies the problem of face recognition
across poses, where each subject has a frontal gallery face
image stored in the database and the probe image is not nec-
essarily frontal. It is of great interest in many real-world
face recognition application scenarios such as surveillance
systems, where the subjects are either indifferent or unco-
operative, so the captured face images are usually in low-
resolution and non-frontal. Pose variation has been iden-
tified as one of the prominent difficult problems in the re-
search of face recognition [1]. The major difficulty of the
cross-pose face recognition is that the intra-person appear-
ance differences caused by rotation are often larger than the
inter-person differences. That is to say, the distance between
appearance vectors of two faces of different persons under
similar viewpoints is much smaller than that of the same per-
son under different viewpoints. This phenomenon makes the
traditional face recognition methods such as eigen-face [2]
or Fisher-face [3] infeasible. Obviously, one straightforward
method for cross-pose face recognition is to actively com-
pensate pose variations by providing gallery views in each
rotation angle to recognize rotated non-frontal probe views.
This can be achieved by first collecting and preparing mul-
tiple real-view templates beforehand for every known indi-
vidual in each specific pose condition. Although the num-
ber of required real gallery images can be reduced by proper
quantization on the rotation angles due to the fact that gen-
eral face recognition algorithms are able to tolerate small
pose variations to some extent, the tedious process of col-
lecting multiple face images in different poses for real-view
based matching is still unfavorable and even impractical in
some cases. For example, in the application of airport secu-
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rity surveillance systems, there is only one frontal passport
photo per person that could be collected and stored in the
database.

Previously both 3D model based methods [4], [5] and
2D appearance based methods [6]–[10] have been pro-
posed for pose invariant face recognition. 3D Morphable
Model [4] is a typical 3D model based method for pose in-
variant face recognition. The 3D morphable model is built
using the principal component analysis of the 3D facial
shapes and textures obtained from laser scanner devices.
The 3D Morphable Model can then realize recognition ei-
ther by transforming non-frontal face images to frontal view
or by directly performing the recognition by using the coef-
ficients of the morphable model. But usually, it is difficult
to detect dense facial feature points that are accurate enough
for the model fitting from low-resolution surveillance cam-
era images.

Among the 2D appearance based methods, one of the
successful approaches is to first generate a virtual frontal
view by applying pose transformation on any given non-
frontal face view. The View-Transition Model (VTM) [6]
is a noteworthy work for pose transformation that can con-
struct human appearance models for different poses which
have proper texture information from a limited number of
input images. The VTM method transforms views of an
object between different poses by linear transformation of
pixel values in images. For each pair of poses, a transfor-
mation matrix is calculated from image pairs of the poses of
a large number of training data. The VTM was further ex-
tended to Local VTM (LVTM) in a patch-wise way [7] and
it was shown that a more satisfactory face recognition result
can be achieved using the virtual frontal face view gener-
ated by the local patch based LVTM than the original global
patch based VTM. Both the VTM and the LVTM methods
use a general training image dataset consisting of faces of
a large number of individuals viewed from both frontal and
various profile angles. The linear transformations learned
from the training dataset are applied to the probe non-frontal
face images, either in a global way as in the VTM or in
a local patch based way as in the LVTM, to generate the
counterpart virtual frontal face image that is then fed into a
general traditional face recognition engine.

A more specific description of VTM and LVTM are
as follows: Given a training multi-pose face image dataset
Θ : {Q1

φ, . . . ,Q
N
φ ,Q

1
θ1
, . . . ,Q1

θL
, . . . ,QN

θ1
, . . . ,QN

θL
}, where N

and L denote the number of training subjects and the num-
ber of profile poses, respectively. θl, (l = 1, . . . , L) are the
degrees of pose rotation angle. When the degree equals zero,
it becomes the frontal pose and is discriminatively denoted
as φ. Qn

φ, (n = 1, . . . ,N) represents the frontal face image
for the n-th subject in the vector form which is a column
vector that has pixel values of the image as its elements, and
Qn
θl
, (l = 1, . . . , L, n = 1, . . . ,N) represents the non-frontal

face image for the n-th subject with the pose rotation an-
gle θl. For an input probe non-frontal face image Pθl , the
purpose is to generate its virtual frontal image Pφ using the
linear transformation learned from the training dataset. The

VTM can be applied for virtual frontal face generation by
one or any number of input images. However, in the in-
terest of simplicity, we describe the frontal face generation
algorithm for one input non-frontal face image only, and as-
sume that the training dataset consists of frontal-nonfrontal
face image pairs with one rotation degree θ only. The VTM
calculates the linear transformation T beforehand using the
training dataset by solving the following equation [6]:
[

Q1
φ · · · QN

φ

]
= T
[

Q1
θ · · · QN

θ

]
(1)

Then the VTM generates Pφ, which is the virtual
frontal face image for the probe image, from the input non-
frontal probe face image Pθ as follows:

Pφ = T Pθ (2)

Faces of two persons might have similar parts although
these faces are not in total similar. Thus transforming the
input face image using the information of the entire face im-
age of other individuals might degrade the characteristics of
the input individual’s face. In order to solve this problem,
the LVTM transforms face patches that are partial images of
a face image for each location in the face image, instead of
transforming directly the entire global face image. That is
to say, LVTM achieves face pose transformation by synthe-
sizing a face image from partial face image patches.

Let qφ(x,y) and qθ(x,y) represent face patches with patch
center location at (x, y) of corresponding frontal and non-
frontal global face image planes Qφ and Qθ, respectively.
The LVTM learns the location specific linear transforms
T(x,y)in a similar way with the VTM as follows,
[

q1
φ(x,y) · · · qN

φ(x,y)

]
= T(x,y)

[
q1
θ(x,y) · · · qN

θ(x,y)

]
(3)

It should be noted that the LVTM transforms each local
area of an image while the VTM transforms the entire area
of an image. Then the virtual frontal appearances for each
local patches can be generated as follows:

pφ(x,y) = T(x,y) pθ(x,y) (4)

After this, the LVTM synthesizes an output frontal face
image Pφ from all the transformed local patches pφ(x,y). The
pixel values of regions where face patches are overlapped
are calculated by averaging the pixel values of the over-
lapped patch, as illustrated in Fig. 1. Experimental results
showed that the LVTM can achieve a higher recognition rate
than that of using VTM for pose transformation [7].

This paper further extends the LVTM and presents a
framework for face recognition across poses based on virtual
frontal view generation using the LVTM with local patches
clustering, which is denoted as c-LVTM hereafter. The pro-
posed c-LVTM can describe the inherent transforming re-
lationship between pixel values of patch pairs in a more
precise way, thus more realistic virtual frontal face images
can be generated and a higher recognition rate can be ob-
tained. The experimental results on a real-world face dataset
demonstrated the superiority of the proposed method. The
rest of this paper is organized as follows: Section 2 describes
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Fig. 1 Face image synthesis by local patches aggregation.

the proposed clustering based local VTM method (c-LVTM)
in detail. Section 3 introduces the experimental result and
Sect. 4 is the summary.

2. Virtual View Generation Using Clustering Based
LVTM (c-LVTM)

The key point of VTM-like methods is the underlying lin-
ear relationship in the frontal and non-frontal face image
pairs. Next we will show that the accuracy of the appearance
transition model and the recognition rate can be further im-
proved by better exploiting the inherent linear relationship
between frontal-nonfrontal face image patch pairs. Based
on the theoretical analysis and conclusion drawn in the refer-
ence literature [9] that – the more similar the 3D geometry of
two objects are, the more similar the linear mapping is, we
assume that for frontal-nonfrontal face image pairs, those
patches with similar underlying 3D shapes and thus similar
2D appearances should have a more precise linear mapping
relationship, since intuitively the variations in appearance
caused by pose are closely related to the corresponding 3D
structure. That is to say, frontal-nonfrontal patch pairs from
more similar local 3D face structures should have a stronger
linear relationship. Thus for the purpose of describing the
relationship of frontal-nonfrontal pairs more precisely, it is
better to learn the transformations specific to the local 3D
structure. For each specific location, instead of learning a
common transformation as in the LVTM, in the proposed
c-LVTM, the corresponding local patches are first clustered
based on the appearance similarity distance metric and then
the transition models are learned separately for each clus-
ter, rather than learning just a single common linear map-
ping using all the patch pairs for a specific location. As
Fig. 2 (a) shows, in order to learn the linear transformations
in a precise way, the training face image pairs are finely
affine aligned using multiple landmarks. However in the
testing stage, as Fig. 2 (b) shows, the input probe face image
is only roughly affine aligned using three landmarks (left
eye, right eye and nose tip), which can be easily detected by
any off-the-shelf facial point detector.

Fig. 2 Affine alignment using landmarks. Different strategies are used
for training and testing stages. (a) In the training stage, in order to learn
the linear transformations more accurately, the face images are finely affine
aligned using multiple (15) landmarks labeled manually. (b) While in the
testing stage, the input probe face image is only roughly affine aligned using
three landmarks (left eye, right eye, and nose tip), which can be easily
detected by any off-the-shelf facial point detectors.

More specifically, we first cluster the local patches
qθ(x,y) for each location (x, y) into K clusters based on the
appearance similarity where cluster k has ck samples as
{q1
θ(x,y), . . . ,q

ck

θ(x,y)}. Then for each cluster, the corresponding

linear transformation Tk
(x,y), which is both location specific

and local 3D structure specific, is learned as follows,
[

q1
φ(x,y) · · · qck

φ(x,y)

]

= Tk
(x,y)

[
q1
θ(x,y) · · · qck

θ(x,y)

]
, (k = 1, . . . ,K) (5)

In the testing stage, the probe non-frontal face image
is first roughly affine aligned, for example using only three
landmark points at left eye, right eye and nose tip, which can
be easily obtained using any standard facial feature point
detector. Then for each local patch of the input non-frontal
face image pθ(x,y), the most visually similar cluster in the
training set is searched in the neighborhood regions ([x −
ε, x + ε], [y − ε, y + ε]) space of a specific location (x, y). If
we denote the most visually similar patch found resides in
the kopt-th cluster of location (xopt, yopt), then

pφ(x,y) = Tkopt

(xopt,yopt)
pθ(x,y) (6)

The final transformed global frontal face image is ag-
gregated from pφ(x,y) in a similar way as in the LVTM. The
main idea of the appearance clustering based local transi-
tion models computation and the optimum transition model
searching is illustrated in detail in Fig. 3. The differences be-
tween the VTM, the LVTM and the proposed c-LVTM are
illustrated in Fig. 4. The VTM learns a global linear map-
ping on the holistic face image plane. The LVTM learns
location specific linear mapping for each local patch. The
proposed c-LVTM learns linear mappings that are both lo-
cation specific and local 3D structure specific. As a whole,
the flowchart of the proposed c-LVTM can be summarized
as follows:
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Fig. 3 An illustration of the main steps of the proposed c-LVTM method. The steps of the appear-
ance clustering based local transition models computation and the optimum transition model searching
are depicted by taking the local patches located on the left eye as an example. First, the local patches
location on the left eye are clustered into clusters of cluster 1, cluster 2,. . . , cluster L based on ap-
pearance similarity. Then for each cluster, the local transition models T 1, T 2,. . . , T L are computed
using the corresponding local patches. Then for the left eye local patch of an input non-frontal face
image, the most visually similar clusters in the training set is searched in the neighborhood regions and
local transition model corresponding to the most visually similar patch found is used to perform the
transformation. The final transformed global frontal face image is the aggregation of all transformed
local patches where the pixel values of the overlapped patches are averaged.

Fig. 4 The difference in how to select the image patterns for the transi-
tion model computation between VTM, LVTM and the proposed c-LVTM
method.

The flowchart of the c-LVTM algorithm:

Training stage:
1) Finely affine align using multiple pre-labeled land-

marks;
2) Split the face image plane into patches, and for each

patch location, perform clustering using appearance similar-
ity;

3) For each cluster, compute the corresponding view
transition model.

Testing stage:
1) Roughly affine align the given input probe non-

frontal face image using auto-detected landmarks;
2) Split the face image plane into patches and for each

patch search the most visually similar cluster in neighbor-
hood range;

3) For each patch, using the searched optimum transi-
tion model, transform it into its frontal counterpart and ag-
gregate all transformed patches;

4) Feed the transformed virtual frontal view face image
into a general face recognition system.

It should be noted that the linear mapping is dependent
on the underlying 3D structure and the way we try to find
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the similar local structure is to cluster the corresponding 2D
appearances. Because the 2D appearances are determined
not only by the 3D structure but also by the corresponding
textures, the proposed method is only an approximation of
3D structure clustering. Fortunately, usually the textures for
the near facial locations are similar and do not change dras-
tically. The proposed scheme based on the approximation
assumption can still achieve a satisfactory result, which is
also examined in the experiment.

3. Experiment

We used a subset of the face image dataset provided by
SOFTPIA JAPAN to demonstrate the effectiveness of the

Fig. 5 The comparison of the visual effect of the transformed virtual
frontal face image using different methods. It can be clearly seen that the
virtual frontal face images generated using the proposed c-LVTM method
have the highest visual fidelity.

Fig. 6 Comparison of recognition rates across different angles. The input non-frontal face images are
transformed using the VTM, LVTM and the proposed c-LVTM, respectively. The rate for the straight-
forward method of using the input non-frontal face images directly is also included for comparison.

proposed method. The subset consists of 250 individuals’
images. They were taken with horizontal angles varying
from −50 degrees to 50 degrees at 10 degrees interval. We
compared the performance of using input images directly,
the VTM, the LVTM and the proposed c-LVTM by 5-fold
cross-validation. We transformed non-frontal face images
to virtual frontal face images and then input the transformed
images to a system that recognizes persons from the virtual
frontal face images using a subspace based face recogni-
tion algorithm. The training images were precisely affine
aligned using 15 landmark points and the testing images
were roughly aligned using only 3 landmark points at left
eye, right eye and nose-tip.

The image size was down-sampled to 32 × 32 in pix-
els, which is the usual size for detected face regions in low-
resolution surveillance video. The face patch size was set to
be 16×16 in pixels. The number of the cluster centers K was
set to 4. The region of neighborhood searching ε was set to
5. The experiment was performed on a 2.8 GHz PC with
2 GB RAM memory under Matlab 7.12 platform. The com-
parison of computation time for training and testing stage
on the dataset is illustrated in Table 1. The visual effects
of the transformed virtual frontal face images using differ-
ent methods are illustrated in Fig. 5. It should be noted that
both the proposed method and its predecessors (L)VTM are
first learning linear mappings over a relatively large train-
ing dataset and then applying the linear mapping to the in-
put image, thus some subtleties in the output image might
be influenced or biased by the training data. It can be seen
that the generated virtual frontal face image using the pro-
posed c-LVTM method has higher fidelity than that of other
methods. This trend is further demonstrated by face recog-
nition rate comparison which is illustrated in Fig. 6. The

Table 1 The comparison of computation time.

Computation time VTM LVTM c-LVTM
Training stage 2 s 5 m 2.5 h
Testing stage 0.5 s 0.5 s 3 m
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Table 2 The comparison of c-LVTM and 3D morphable model.

Property c-LVTM 3D morphable model
Computation Complexity Intermediate High
Pose Invariant Robustness High High
Facial Landmarks Needed Auto Manually

Lighting Invariant Robustness Low High
Special Device Needed No 3D laser scanner

recognition rate of the straightforward baseline method that
using the non-frontal face images directly as input is much
lower than that of using the virtually generated frontal face
images as input, either using VTM, LVTM or the proposed
c-LVTM. Furthermore, the recognition performance of the
proposed c-LVTM outperforms the VTM and LVTM in two
ways: 1) c-LVTM has a higher recognition rate than VTM
and LVTM; 2) Though all methods have a rate decreasing
trend as the pose angle increases, the proposed c-LVTM has
a more robust property against pose angle degree. That is
to say, as the pose angle increases, the curve of rate-vs.-
angle for c-LVTM drops less drastically than that of VTM
and LVTM. The recognition rate comparison results vali-
date our assumption that learning both location specific and
local 3D structure specific linear transforms can better cap-
ture the relationship between frontal and non-frontal patch
pairs than just learning a single common linear transforma-
tion. Table 2 is the property comparison of the proposed
clustering based LVTM and the typical 3D morphable model
method [4], where their corresponding pros and cons are il-
lustrated in details.

4. Conclusion

In order to better exploit the underlying linear relationship
between frontal and non-frontal pairs, this paper presented
a framework for face recognition across pose based on vir-
tual frontal view generation using the Local View Transition
Model (LVTM) with local patches clustering. The proposed
method further extended the LVTM by learning not only the
local patch position specific transformations, but also the lo-
cal 3D structure specific linear transforms. Experimental re-
sults showed the effectiveness of the proposed method.

We would like to further investigate in the following
aspects: 1) The proposed method has the visual clustering
and appearance searching procedures, that bring high com-
putation burden. Next, we will study how to optimize the
computation procedures to speed-up the computation more
efficiently; 2) We plan to study the robustness of the pro-
posed method to some specific uncertainties, for example,
the subtle facial appearance changing and the error of the
feature points detection; 3) We will study how to further
improve the recognition rate of the proposed method, espe-
cially under the condition of larger profile degree.
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