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Abstract. We propose a dynamic visual learning method that aims to identify
people by using sparsely distributed multiple surveillance cameras. In the pro-
posed method, virtual viewpoint images are synthesized by interpolating the
sparsely distributed images with a simple 3D shape model of the human head,
so that virtual densely distributed multiple images can be obtained. The multi-
ple images generate an initial eigenspace in the initial learning step. In the fol-
lowing additional learning step, other distributed cameras capture additional
images that update the eigenspace to improve the recognition performance. The
discernment capability for personal identification of the proposed method is
demonstrated experimentally.

1 Introduction

The recent deterioration of public safety is causing serious concern. Biometrics is one
of the most promising technologies for alleviating this anxiety [1][2]. We are cur-
rently researching a form of biometrics that uses surveillance cameras set up in an ac-
tual space like a hospital or a railway station. For instance, we assume the hospital
shown in Fig. 1. It is hoped that we obtain more appearance information at the en-
trance because at that point a suspicious person's invasion is obstructed.

Generally, because there is a broad field of view at the entrance, the images from dif-
ferent directions can be captured by using multiple cameras. If the monitoring system
confirms that enough learning of an object’s appearance has been performed, the
automatic door opens and entry to the hospital is permitted. While the object is walk-
ing along the passage from the entrance to the sickroom, new images are captured
with a surveillance camera arranged at each chosen position. The appearance infor-
mation on the object is then updated by using the new images. When the object tries
to enter the sickroom, another image of the object is captured by the surveillance
camera set up in front of the sickroom. The personal identification processing is then



performed by using captured images, and when the result corresponds with the sick-
room’s authorization list, the automatic door opens and entry to the sickroom is per-
mitted. A person's action history is generated with the processing of additional learn-
ing and identification. It is considered that different lighting conditions at each
location has a strong influence on the accuracy of individual identification, though we
assume to be able to control the lighting conditions almost constantly in indoor envi-
ronments such as hospitals.
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Fig. 1. Surveillance cameras in hospital
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In this paper, we show a proposed method for dynamic visual learning based on a
parametric eigenspace using sparsely distributed multiple cameras. We also describe
some experiments to demonstrate the effectiveness of the proposed method.

2 Related Works

As people generally utilize facial appearances to identify individuals, the human face
has potential for use as the most important type of information for biometric technol-
ogy, making face recognition is one of the most important reasons for installing sur-
veillance video sensors [3][4]. Most of these sensors demand a frontal or near-frontal
facial view as the input appearance, and extract points of interest for the identification
process (e.g., eyes, brows, nose and mouth). However, it is not always possible to
capture the desired appearance with practical surveillance cameras. Therefore, in or-
der to achieve a high recognition rate, the systems have to severely restrict people’s
activities, as in a portrait studio.

Parametric eigenspace is a well-known method for identifying objects with various
appearances from images [5]. In order to generate a parametric eigenspace that
achieves accurate identification, a number of different appearances, which can be
collected by densely distributed multiple cameras, are generally required. However, it
is not practical to set up a dense network of surveillance cameras around objects in the
real world; general-purpose surveillance cameras are sparsely distributed, because the
primary objective of the cameras is to monitor the widest area possible.

The objective of this paper is to realize a dynamic visual learning method based on
parametric eigenspace to identify people captured with sparsely distributed multiple
surveillance cameras. If we simply generate an eigenspace with a small number of



sparsely distributed images, it is not possible to identify people from various viewing
angles because the eigenspace cannot effectively learn the variety of appearances.
Murase et al. attempted to fill the gap between the multiple images with a spline in-
terpolation technique in a roughly generated eigenspace [6]. In our case, however, the
gap is much larger than the one they dealt with in their research. The reason why
spline interpolation does not work well with sparsely distributed images is that
changes in the captured object’s appearance are not considered in the interpolation
process. The Virtualized Reality popularized by Kanade synthesizes a novel view
with a 3D shape reconstructed from images captured with multiple cameras [7]. This
technique makes it possible to interpolate multiple images by considering changes in
appearance. In our proposed method, we mainly employ this technique to virtually
capture multiple images and to generate an initial eigenspace. However, we need to
modify this technique by simply using a 3D face model provided by the Galatea pro-
ject [8], rather than recovering the 3D shape of the object from the captured multiple
images, because it is still difficult to recover the 3D shape of the object from sparsely
distributed multiple surveillance cameras.

3 Proposed Method for People Identification with Sparse Multiple
Cameras

As illustrated in Fig. 2, the proposed method consists of two phases. We call the first
phase the “initial learning phase ” and the second one the “additional learning phase.”
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Fig. 2. Parametric eigenspace method with sparsely distributed multiple cameras

Initial Learning: In this phase, a view interpolation technique is used to generate an
initial eigenspace. The surrounding sparsely distributed multiple cameras capture the
target object at the same time. The 3D visual hull of the object is then reconstructed
by merging the multiple images using the shape from a silhouette method [9]. A sim-
ple 3D face model is fitted to the visual hull to mask the face region, and as a result, a
3D shape model is estimated. This method virtually captures multiple images by in-
terpolating the appearance information of sparsely distributed images with the 3D
shape model, and generates an initial eigenspace.



Additional Learning: To improve the method’s ability to identify individuals in the
eigenspace, the additional learning phase dynamically updates the eigenspace gener-
ated in the first phase. The extrinsic parameter of the additional capturing cameras is
estimated as a relative pose with respect to the object. Then, the captured image is
projected onto the 3D shape model with the parameter as texture information to im-
prove the appearance of the interpolated images. By regenerating the eigenspace of
the updated image data set, the discernment capability for personal identification of
the eigenspace is improved.

4 Initial Learning Phase

4.1 Extraction of Head Region

As illustrated in Fig. 3, we set up a camera that looks down from the ceiling of the
target space. Koyama et al. estimated 3D positions (X, ¥, Z) from the 2D coordinates
in an overhead image (u,v) while assuming that all target objects are at a constant
height Y [10]. Under this assumption, a homographic transformation H is calculated
that projects 2D coordinates in the overhead image onto a 3D plane. Eq. (1) is the
equation of the projection. However, this assumption imposes a limitation on detect-
ing the objects.

Ax z 1] ="H[u v 1] 1)

Calibrated Camera Calibrated Camera

I — & rw -

Homographic
Transformation

Hn

Projective
q Transformation

'\, exiract ahead region
¥ — B
iz
2 X

Fig. 3. Extraction of the head region
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We improve this plane-based object-tracking method to detect the object’s 3D po-
sition with arbitrary height information [11]. In this method, two base-planes are
placed in 3D space, one on the ground (height=0) and the other at height YA, after
which the homographic transformations H0 and HI are calculated. If the height of a
new plane is given as Yn, the homographic transformation Hn is estimated by inter-
polating H0 and H1, as in Eq. (2).

H, =(Y,.Y,)H,-(Y,)H)/Y, 2)



The segmented foreground region is projected onto the 3D plane-# by changing the
height Yn from 0 to Yh. If the target object stands vertically like a human, the pro-
jected foreground region always includes a certain point (X,Z) on plane-n where the
actual 3D object exists. By merging all of the n-planes (e.g., by an AND operation),
the 3D position of the target object is estimated.
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Fit a 3D face model to the visual hull

Fig. 4. A simple 3D face model Fig. 5. 3D model estimation

4.2 3D Shape Model Estimation and View Interpolation

The accuracy of the estimated 3D shape seriously affects the quality of the interpolat-
ing images. To solve this problem, we employ a simple 3D face model provided by
the Galatea project and fit the model to the visual hull to mask the face region. Fig. 4
shows the wire frame model of the 3D face model.

As illustrated in Fig. 5, we set a horizontal plane p(y) and project all of the fore-
ground regions in all of the multiple images that have been calibrated in advance. The
sliced 3D shape of the object is estimated as the overlapped region of all the projected
regions [12]. We calculate the size and position of the captured head as the radius »(y)
and the center of the circle c(y)=(X,Y,Z) by fitting a circle to the estimated shape on
the plane, and execute the same process while shifting the horizontal plane along with
the vertical axis to cover the head region. The head height / is estimated by searching
for the minimum nonzero radius and the highest position of the head. As the
right-hand side of Fig. 5 shows, we scale the 3D face model up/down with respect to
head height and put the 3D model at the center of the head region. With this scaling
process, we can reflect individual differences in head size.

The input multiple images are texture-mapped onto the estimated 3D face model
using Projective Texture Mapping [13]. We render interpolation images while rotating
a virtual camera around the 3D model in 1° increments. The blending parameter of
each image (texture) is then calculated using the distance from the input multiple
cameras to the viewpoint currently being interpolated.

4.3 Parametric Eigenspace Generation

4.3.1 Normalization

Normalization consists of two steps: scale normalization and brightness normaliza-
tion. In scale normalization, the extracted head region is resized to a square region



(e.g., 128 X 128 pixels) with its center at the top of the head. In brightness normaliza-
tion (Eq. (3)), each image fc[ is transformed to a normalized image X, . In this normal-
izing process, our method has an advantage in that it is possible to completely control
the conditions while generating the input image set, because they are synthesized im-
ages.

X,

1

X, =X,/

3)

4.3.2 Creating the Initial Eigenspace

To compute the eigenspace, we first subtract the average ¢ of all images in the image
set from each image in the set as shown in Eq. (4), where N is the total number of
images in the image set. Then, to compute the eigenvectors of the image set, we de-
fine the covariance matrix Q also given in Eq. (4). The eigenvectors e;and the cor-
responding eigenvalues A, of O are to be computed by solving the eigenvector de-
composition problem using Eq. (5). All of the eigenvectors of O constitute a complete
eigenspace. However, only a small number of eigenvectors is generally sufficient for
capturing the primary appearance characteristics of objects. These k eigenvectors
correspond to the largest k eigenvalues of O and constitute the eigenspace. The num-
ber k of eigenvectors to be computed is selected based on recognition ability.

Q=Xxx", X:[xl—c,xz—c,---,xN—c] 4)
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Each image x, is projected onto the eigenspace. This is done by subtracting the aver-
age image ¢ from x,, and then finding the dot product of the result with each of the £
eigenvectors, or dimensions, of the eigenspace as in Eq. (6), where i indicates the
pose parameter. The result is a single point in the eigenspace, and by projecting all of
the image sets, we obtain a set of discrete points. Pose variation between any two
consecutive images is small; as a result, their projections in eigenspace are close to
one another. Such a sampling creates a continuous loop in the eigenspace.

8 :[elvez""’ek]T(Xi_c) (6)

5 Additional Learning Phase

5.1 Global Search

A surveillance camera captures a person who has already registered his/her appear-
ance information in the initial learning phase. We extract the normalized head region
from a captured image ¥, with the above-described method, and project the region
onto the calculated eigenspace. Concretely, the average ¢ of the entire image set used
to compute the eigenspace is subtracted from the input image ;- The resulting image
is projected onto eigenspace to obtain a point z,;- The equation for this the projection
is Eq. (7). In order to search for the interpolated image most similar to the input im-



age, we calculate the Euclidean distance of each eigenvector in the eigenspace be-
tween the input image z, and the view-interpolated images g .. The parameter of the
interpolated image that has the most similar eigenvector to the input image’s vector is
estimated as the rough relative observing orientation.

Zj :[ewez’“'vek]T(yf_c) M

5.2 Local Search

Since the activity of the captured people is not controlled, their poses might be dif-
ferent from the poses in the initial learning phase. Thus, the estimated observing ori-
entation contains a measure of error. In this section we describe a method for correct-
ing the estimation error.

5.2.1 Generating a Synthetic View

Once a 3D model has been generated, it is possible to render synthetic views of the
modeled face with various rotation and translation parameters of the cameras. We as-
sume the 3D model to be fixed, and the camera moves relative to it. In order to render
images that have a slight difference in appearance with the matched image in the
global search, synthetic view generation is repeated for a range of rotations around the
x, y and z axes (the x axis is through the neck, the y axis is through the head, and the z
axis is perpendicular to the x and y axes). Typically we use plus or minus 30°, plus or
minus 5°, and plus or minus 10° around the x, y and z axis, respectively, quantized in
5° intervals, for a total of 195 synthetic views. Fig. 6 shows some sample generated
images.

olole
aao
olele

Fig. 6. Synthetic views that have slight differences in appearance
from the matched image in a global search.

5.2.2 Matching Against Synthetic Views

To find the best match, we compare the input image with each of the synthetic views.
Consider the input image / that is being matched against a synthetic image S. The
goodness of the match M between the two is found by computing Eq. (8), where /(1,j),
S(i,j) are the image intensity at pixel (i,j) in the input and synthetic images, respec-
tively. This is the well-known SAD method. The best-matching synthetic view is the
one that minimizes this score.

M(s,t)= | 1(i, j)=S(i+s,j+1)| (8)

We are not, however, aiming to obtain the best-matched image but to get the camera
parameters. To do this we use a downhill simplex method [14], which is a



multi-dimensional optimization method, to estimate the camera parameters in order to
minimize Eq. (8). To avoid a local minimum solution, we start from random values,
and then pick the solution corresponding to the lowest minimum value.

5.3 Updating the Eigenspace

By projecting the input image with the estimated camera parameters, the texture in-
formation of the captured object’s 3D shape model is updated. Then, as in the proc-
essing in Section 4.2, the interpolating images are regenerated while rotating a virtual
camera around the 3D model. We thus again calculate an eigenspace with the updated
image data set. If the appearance information of the 3D model becomes more accurate
with additional texture mapping, the discernment capability for personal identification
of the eigenspace improves further. We demonstrate the effectiveness of the proposed
method in the next section.

6 Experiments

In these experiments, all images are captured by Sony network cameras (SNC-Z20)
with a 640x480-pixel image size. All eigenspace figures in this section show only
three of the most significant dimensions of the eigenspace since it is difficult to dis-
play and visualize higher-dimensional spaces. In other processes, the number of ei-
genspace dimensions used is 25, and in this case the accumulation-contributing ratio
exceeds 95%.
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(a) Interpolation using the cubic spline function (b) Interpolation using our method
Fig. 7. Comparison between the two types of interpolation methods

6.1 Interpolation Method Results

To evaluate the effect of the viewpoint interpolation in the proposed method, we
compared the locus of the proposed method with the locus interpolated using a cubic
spline function. In this experiment, the real images captured at intervals of about 22.5
° were assumed to be the standard. Fig. 7(a) illustrates the result of the real images
that are regarded as the standard and the result of interpolation using the cubic spline
function. In this figure, to improve the visibility of the loop features, we have inter-
polated the real images with the cubic spline function that is generally used to inter-
polate eigenspace. Fig. 7(b) represents the result of the real images that are regarded
as the standard and the result of interpolation using a 3D model. Comparing Fig. 7(a)



with Fig. 7(b), we see that interpolation using a 3D model is more complex than that
using the cubic spline function for the real images. From this result, when we have
only sparsely input images, it can be said that interpolation using a 3D model can cre-
ate a higher discernment capability eigenspace than interpolation using the cubic
spline function.

6.2 Additional Learning Results

Next, we examine how the additional learning process updates the initial interpolation
images. The upper row in Fig. 8 shows interpolated images from the four initially
captured images. With our proposed additional learning method, the encircled regions
are updated by newly captured images. On the bottom row of Fig. 8 we can see that
the realism of the interpolated images is improved by the replacements provided by

additional learning.
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Fig. 8. Result of additional learning phases

6.3 Results of Discernment Capability

We have already experienced how the discernment capability among four persons
varies as replacement is performed. In this experiment, first, one person from a group
of four is chosen as the identification object, and interpolation images of the person
are subsequently generated with a 3D model. Then, 50 face images of all four people
are projected to the eigenspace generated by using the interpolation images, and we
calculate the distance in the eigenspace among the interpolation images and the pro-
jection point. The distance (threshold) is obtained by comparing the projection point
of the 50 face images of the four persons with the projection point of another 50 face
images of the same four persons. Fig. 9 shows how the discernment capability among
the four persons varies as replacement is performed. We can see that the discernment
rate improves as additional learning progresses, and that discernment capability has
improved. However, the discernment rate decreased when the number of additional
images became four from three. We think this loss of performance occurs due to the
gap in the texture mapping and errors in extraction.

7 Conclusions

We proposed a learning method for parametric eigenspace using sparsely distributed
multiple cameras. We have demonstrated that the discernment capability of the initial
eigenspace is improved by repeating the updating process, and that interpolation using
a 3D model more closely resembles the real image than interpolation using the cubic



spline function. Future work will include reducing errors in extraction and a method
to put together various pieces of information for personal identification. This research
was supported in part by the National Institute of Information and Communications
Technology.
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