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SUMMARY

It is becoming important for working robots to be
able to identify and pick objects in various tasks. As in
the recent Amazon Picking Challenge, using a marker for
the picking task is a more practicable approach. However,
a common maker code for working robots does not exist
so far. Conventional maker codes as represented by QR
code or ARToolKit marker cannot be reliably detected
from various viewpoints. Thus, in this paper, we propose
a new encoded marker which is flexible to the marker’s
position and blur. The proposed marker can be detected by
an approach based on the scale space theory independent
from such conditions. In addition, the representation of
data by M-sequence makes the encoded marker robust to
blur. Experimental results showed the effectiveness of the
proposed marker compared to the ARToolKit marker. Since
the marker is more robust against ground clutter noise,
various positions of markers and blur, it is more practicable.
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1. Introduction

In recent years, working robots such as Baxter [1]
(Rethink Robotics) and NEXTAGE [2] (Kawada Robotics
Corporation) have been becoming popular in factories, and
so on. Among these robots, an interest in task for robots
to pick up objects, such as Amazon Picking Challenge
[3], has been increasing. In order that such robots can be
adopted for all purposes, they need to ensure flexibility
to distance and arrangement for targets. Namely, it is im-
portant that even if multiple objects as targets are located
at any distances and arrangements, these situations can be
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detected and recognized, and these arrangements further
can be accurately estimated. A method has been studied
that objects are detected and recognized and their three-
dimensional arrangements are estimated after registering or
learning these models to this kind of problem setting [4, 5].
In this method, three-dimensional CAD model data of an
object are prepared, its various arrangements are recorded
as two-dimensional RGB-D image (or RGB image) tem-
plates, and then the object is detected and recognized and its
arrangement is estimated by comparing it with templates.
This method has practical disadvantages such that its com-
putational cost is high because each object is compared with
various templates and that higher detection accuracy cannot
be realized without specific shapes.

Meanwhile, a method has been practically used that
detection, recognition, and attitude estimation of objects
are performed by attaching markers directly on targets. If
a target is a small object and has curvatures, a marker may
be attached on a box with a handle, in which the target
object is placed [6, 7]. If the position relationship between
the attached marker and the grip position of the object is
confirmed in advance, a robot can act grip operation. Many
of currently used markers have practical performance by
limiting the distance and arrangement between a marker as
an object to be shot and a camera. Therefore, such a system
cannot be operated under a condition where markers cannot
be easily detected. In the case that such a marker is applied,
two serious disadvantages mainly arise if (1) markers with
various distances and arrangements are placed under envi-
ronment with disordered background and (2) blur is caused.
In order that robots act various kinds of operations, (1) is
a serious problem to be solved, and highly flexibility is
demanded to distance to markers and their arrangements.
It is also important to control the environment with blur of
(2) so as to solve the problem (1). Blur is caused because a
marker is situated out of the range of depth of field.

Considering the background explained above, in this
paper, we propose a novel marker for the purpose to solve
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the following two practical problems to a marker for work-
ing robots, assuming grip operation.

1. Marker easy to detect independent on blur
2. Marker easy to detect independent on back-
ground and arrangement

In order to solve them, we propose “detection” pro-
cessing easy to find markers and a design pattern of markers
necessary for that. A method focusing on “detection” has
not been proposed before, and it is a specific task if robots
deal with markers. In this paper, finding a marker is defined
as “detection”, and accurately identifying a marker among
detected candidates is defined as “recognition”.

The proposed marker can be detected under a condi-
tion where its spatial arrangement, position, and size (scale)
are unknown in advance, and it is robust to its arrangement
and scale change. Different from a conventional marker,
it is not necessary to compare this proposed marker with
multiple templates with different arrangements and sizes.
Specifically, we propose an encoded marker utilizing scale-
space theory [9] known as keypoint detection by SIFT [8&].
Marker detection is efficiently performed by using a dis-
crimination filter which extracts only marker shape [10]
easy to calculate extremum of scale space and marker.
Then, a marker can be recognized using M-sequence [11]
even if its pattern is blurred.

Figure 1 shows an example where the proposed mark-
ers are detected. As illustrated in Fig. 1, some misdetections
are observed with conventional ARTookKit markers. They
are easily affected by light and shadow so that some mark-
ers cannot be recognized correctly (Fig. 1(b)). Meanwhile,
it can be found that multiple proposed markers placed in
different positions can be detected correctly in a cluttered
environment (Fig. 1(d)).

Hereafter, associated studies are introduced in
Section 2, a proposed marker is described in Section 3,
experimental results and their discussion are described in
Section 4, and conclusions and a challenge in the future
are described in Section 5.

2. Associated Studies

In this section, conventional marker technologies are
introduced in terms of “detect” to find markers. QR code
[12], which is currently the most widely used, is the marker
constructed by patterns such as edges and corners. In order
to detect corner patterns of three corners as marks, it is
required that the distance between a camera and a marker
is short and a marker is shot from relatively front side.
On capturing from distant places, modification of detec-
tion performance is aimed using encoded aperture [13] and
super-resolution [14] since blurred patterns are observed.
Howeyver, as it is assumed that this marker is utilized under
a condition where it can be easily detected, it is difficult to
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apply this marker to working robots which need to detect
markers situated in distant places.

Markers used for ARToolKit [15] are widely utilized
to estimate position and arrangement of a camera in envi-
ronment. A marker is represented by binary pattern, that is,
black bold frame and inner part. Detection is performed by
finding four points at corners of the frame and then com-
paring four sides. The relative position and arrangement
between a camera and a marker is also estimated using the
four points at the corners at the frame. This marker serves
to estimate position and arrangement for any placement.
However, there is a problem that misdetection often occurs
if there are similar shapes to the marker such as a rhombus.

Meanwhile, many markers with color information
have been proposed. As examples, ChamelonCode [16],
ColorZip [17], ColorOCM [18], ColorBit [19], C-Band
[20], HCCB [21], and so on, are given. These markers are
represented by a set of patterns with colors, where fea-
tures (information) are expressed based on pattern colors
and color difference between adjacent colors. This kind
of marker has been already adopted to manage books in
libraries as practical use, where this system enables simul-
taneous detection and recognition of multiple markers by
measuring markers attached on spines of books from a
certain distance. Like QR code, the detection of these mark-
ers is classified into a method [?, [21]] to acquire specific
patterns and a method [18, 19] to identify arrangement of
colors. The former method has the same disadvantage as
QR code has. In the latter method, a marker is difficult to
be detected in the case that there are similar colors in their
background and that color information is mixed or lacked
by its blur because a marker far from a camera is shot by
small size. Under a situation that colors of marker cannot
be acquired precisely, while a method has higher flexibility
to distortion and arrangement of markers, they cannot be
detected.

As a marker which can be detected from a distant
location, Nested Marker [22] and Bokode [23] are given.
Nested Marker adopts fractal pattern, where it is designed
to be similarly observed both in short distance and long
distance with regard to its geometrical pattern. A marker
Bokode is made of optical material, so that a floodlight is
required for its detection. A marker receiving floodlighted
light projects a larger pattern than itself in the air by the
principle of pinhole camera. Both of the methods aim to
solve the problem on distance and recognition (decoding
performance of data), and the relationship between a cam-
era and a marker is established only from front side. How-
ever, if a marker does not face to a front side, the same prob-
lem as QR code occurs. Meanwhile, as a marker robust to
blur, Mono-Spectrum Marker [24] is given. In this method,
an element of pattern is represented by single color in low-
frequency region. Only recognition method is discussed.
The detection procedure is the same as that of ARToolKit
marker, so that it has similar problem.
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Fig. 1.

As described above, it is supposed that conventional
markers are used under a condition where they can be easily
detected. The detection under conditions is not considered
well, where (1) markers are placed in various distances and
by various arrangements in cluttered background, and (2)
images are blurred.

3. Encoded Markers Easy to Detect Based
on Scale-Space Theory

When obtaining information automatically from im-
ages, we cannot know in advance which scale should be
used. In order to solve this problem, scale-space theory is
proposed [9], where an image is represented as a set of
scales with parameters so that all of the scales are processed
simultaneously. Its feature is the marker detection apply-
ing scale-space extrema detection, which enables to easily
detect marker’s candidates independent on estimation of
marker’s size (scale) and its arrangement.

Detection

It is difficult to correctly detect markers placed
by various arrangements. Meanwhile, a strong point of
SIFT features is that they also utilize scale-space extrema
detection (keypoint detection) and have invariableness to
enlargement and reduction. If a marker is designed by
applying this advantage, easy detection is expected to be
possible without depending on distance from a camera to a
marker. SIFT features also have invariableness to rotation
and translation with description of information on gradient
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Fig. 2. Structure to detect by SIFT. [Color figure can be
viewed at wileyonlinelibrary.com]

around keypoints. This is based on keypoints, so that they
are also considered to have invariableness to rotation and
translation. Namely, it is considered that easy detection can
be realized independent on a marker’s direction by applying
scale-space extrema detection. Figures 2(a-1) and 2(b-1)
show images of a detected marker and its brightness-
inverted image, respectively. Further, Figs. 2(a-2) and
2(b-2) show three-dimensional drawings on brightness
of (a-1) and (b-1), respectively. The scale-space extrema
detection has a feature that it strongly responds to concave
(local minimum) of brightness surrounded by convex of
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brightness shown in Fig. 2(a-1) and convex (local maxi-
mum) of brightness surrounded by concave of brightness
shown in Fig. 2(b-1). Then, we design a marker using this
feature. Specifically, it is a ring-shaped marker with a circle
at its center. We develop a detection pattern such that its
ring and center parts correspond to concave and convex of
brightness, respectively. This marker has a pattern enabling
easy scale-space extrema detection, so that the size of the
marker can be estimated based on its calculated scale value.

Recognition

Pattern of marker is deteriorated if captured from far
distance. Then, the encoding using M-sequence [11], which
is known to have “high self-correlation and low mutual-
correlation”, is performed. With this encoding, a design is
possible such that a steep correlation can be established
between the measured encoded pattern and the designed
encoded pattern, so that an encoded pattern on marker can
be recognized (identified) precisely.

3.1 Marker detection

Detection process of marker is shown in Fig. 3. First,
candidates of the marker are searched by the keypoint
detection of SIFT. Second, the candidates of the marker
are narrowed down for the acquired candidates through a
discrimination filter. Finally, a decision process of marker
is carried out.

3.1.1 Marker configuration

Figure 4(a) shows examples of proposed markers. As
all of them have ring structures, therefore the keypoint de-
tection of SIFT can capture the center of a marker. Further,
a double-ring structure as a detection pattern is constructed
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Fig. 4. Comparison of marker’s design pattern. [Color
figure can be viewed at wileyonlinelibrary.com]

using the G component in RGB color model, and its data
pattern is represented with the R and B components. This
double-ring structure by the G component is also used not
only for the position detection of a marker, but also for
correlation value calculation of pattern described in Section
3.14.

3.1.2 Narrowing of marker’s candidates
by keypoint detection

Only the G component is extracted from an input
image, and then its brightness is inverted (a ring and a
center of a marker correspond to concave and convex of
brightness, respectively). After that, only convex of bright-
ness (local maximum) is extracted from scale space (set of
DoG images [8]). Then, a keypoint location and its scale are
calculated. The calculation method is explained in a paper
by Lowe [8]. At the beginning, we designed such that both
of local maximum and local minimum were picked up as
candidates, but only local maximum was selected as a can-
didate, so that image inversion is processed. Figure 5 shows
candidate points of a marker by the keypoint detection of
SIFT. While false candidates are also detected, it can be
found that a keypoint is always at the center of a real marker
in each image.

3.1.3 Narrowing of marker’s candidates
by a discrimination filter

Based on the information on gradient around key-
points, marker’s candidates are further narrowed down ac-
cording to the degree of gradient at edge in X and Y direc-
tions. Only the candidates with strong edge components in
both of directions are extracted, and the others are removed.
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Its condition should be |Det(H)| > 1.0 x 10-5, where the
equation for the discrimination is as shown in Eq. (1). Here,
the matrix H is Hesse matrix for DoG images as shown in
Eq. (2).

Det(H) = D, Dy, — (D,,)’ 1
D, D
H = xx Xy (2)
[DX)’ D)’)’]

Figure 6 shows the result narrowed by a discrimina-
tion filter. It can be seen that only a marker is detected after
a discrimination filter is applied, while multiple keypoints
are detected on an uneven wall with concaves and convexes.

3.14 Marker judgment by pattern correlation

With locations of keypoints and their scales, a real
marker is judged from candidates.

At first, scales are recalculated by the following pro-
cedure. The reason for the recalculation is because an error
is caused between an estimated scale and an actual size of
a marker if an arrangement of a marker is inclined for a
camera. If a scale estimated in Section 3.1.2 is n, a mean
brightness @ is calculated in an area of 1.5 n square where
its center is a keypoint location (x, y). After that, the num-
bers of successive pixels, larger than @, in the horizontal
direction on left and right sides of the keypoint location
(x) should be P, and P, respectively. Then, a final scale
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value n is calculated by (P,+P))/2. Here, the brightness of
the location (x, y) is expressed by I(x, y).

=(P. +F)/2
0.750 0.75n

i

Pr= Z f(x+i’)’) Pl= E f(x_i’y) (3)
i=1 i=1

f(x’y)={1(1(x,y)>d>>

0 (otherwise)

The decision as a maker is to compare a binarized
pattern of a G component configured by a double ring with
a designed ratio of a marker. A binarized pattern for the
comparison has pixels equal to a marker size based on n
with only one line in the horizontal direction with an esti-
mated keypoint location as the center. Under this setting, a
candidate satisfying Corr Z 0.8 should be decided as the
marker. The correlation equation is as follows:

n
Corr =ZSI,O[,, 4
p=1

where §,, is the measurement pattern and O, is the design
pattern of the marker, and both of them are binarized to
have the value +1 or —1. The symbol n [pixel] is the marker
size calculated based on the estimated scale 1. Because the
marker shape is ring, the pattern ratio of a horizontal line of
a shape passing through the center of ring is constant even
if the shape is altered by the projective transformation. If
the keypoint and the scale are correct, both of the pattern
correlations agree with each other.

3.2 Marker recognition

Figure 7 shows a procedure of marker recognition.
The decided marker is recognized as one of registered
markers. A prior art [25] applies M-sequence encoding to
detect angles of a turn table. It is used as a marker in this
study.

3.2.1 Scanning of data area

The data on three ring parts (see Encoding area in
Fig. 3) are encoded. In order to extract these parts, the fitting
to ellipse is performed using the scale value 1 estimated in
Section 3.1.

3.2.2 Data pattern generation using
M-sequence

A pixel array of one round along a ring corresponds
to one cycle of M-sequence. Using a biquadratic primi-
tive polynominal, M-sequence is a row vector with (2*-1)
elements of {1, —1}, and p, which is 16th element and —
1 is added thereto, is utilized for encoding and decoding,
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where 1 and —1 correspond to the brightness 255 and 0,
respectively.

3.2.3 Data representation by phase difference
of M-sequence and decode processing

The phase-shifted patterns p equal to M-sequence are
arranged to each of three rings (internal, middle, and exter-
nal rings) shown in Fig. 7, and then data are represented by
these phase differences. One round of the ring is set to 7 bit
(128-bit resolution: about 2.8 degree/LSB). At decoding,
convolution is operated between a measured pattern for one
round and p with the same length of the measured pattern
with regard to each ring by shifting by one pixel, where
a shift amount is recorded at the point with the highest
correlation value. Shift value at peak points for three rings
is compared and they are calculated as phase differences.
Uppermost 7 bit by the phase difference between the center
ring and the internal ring, and lowermost 7 bit by the phase
difference between the center ring and the external ring,
namely, total 14 bit of data representation is possible.

4. Experiment and Consideration
4.1 Experimental condition

In order to confirm the effectiveness of the proposed
marker, the proposed marker and the ARToolKit marker
were compared with regard to the detection and recognition
performances of marker. Specifically, the robustness to blur
and various dispositions (distance and arrangement) under
cluttered background for both of markers were compared.
Further, in order to evaluate the robustness of the proposed
marker to its geometrical disposition, the influence by dis-
tance and direction was analyzed. Markers corresponding
to 14 bit (16,384 pieces) were registered for the proposed
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marker and the ARTookKit marker. In this experiment, 10
kinds of markers, as shown in Fig. 4, were utilized for
both kinds of methods. The size of each marker is 9 cm
square. This size adapted to the size of markers applied to a
task to pick up objects from shelves by life support robots
[6, 7]. A camera mounted in a smart phone (Nexus 5 by LG
Electronics) was used to capture images and the resolution
was 640 x 480 pixels. It is noted that a camera Cameleon by
PointGrey, capable of controlling its open, was applied to
evaluate the performance for blur. Similarly, the resolution
was 640 x 480 pixels. The detection and recognition rates
to the proposed marker and the ARToolKit marker realize 1
fps, respectively, using a PC mounting the CPU Corei5 by
Intel, so that it is enough possible to start gripping operation
after recognizing a marker.

In this experiment, if the distance between a detected
point of the marker and its actual point was within 5 mm,
the detection was regarded as successful detection, and if
the data on the marker could be decoded correctly, it was
regarded as successful recognition. In both the detection
and recognition experiments, F' value was used, which is
the harmonic mean of precision and recall to the number of
markers.

As parameters of scale-space extrema detection, the
step size of scale was k = 2!/3 and the initial scale was ¢
= 1.2, and 1 octave was stepped by three steps, then search
was performed to three octaves (total nine steps).

4.2 Comparison on detection and recognition
performances for blur

The experiment was carried out under the condition
such that the degree of blur was varied by controlling the
open of the camera. The positions of the camera and the
markers were fixed, where the distance between them was
1 m. The measurements were implemented 100 times for
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Fig. 8. Blurred pattern used in the experiment. [Color
figure can be viewed at wileyonlinelibrary.com]

Table 1. Performance against blur (F-measure)
Marker Detection Decoding
ARToolKit 0.925 0.780
Proposed 1.000 0.978

each of 10 markers, and then total 1000 data were evalu-
ated for each method. Figure 8 shows the blurred patterns.
Table 1 further shows the result on detection and recog-
nition. This table explained that the proposed marker has
higher detection and recognition rates than the ARToolKit
marker. It can be said from this result that the proposed
marker is hardly influenced by blur. This consideration can
be also seen from the points of (1) detection processing and
(2) recognition processing.

4.2.1 Detection performance at blur

Figure 5 shows the result that blurred images were
made by simulation and then detected locations of key-
points were verified. It is obvious from these images that
keypoints as marker candidates can be detected correctly on
blurred images. It can be also found that markers with in-
clined arrangement can be detected correctly. As described
above, it is considered that the detection performance of
the proposed marker is deteriorated a little by blur. This is
because extrema are searched in scale space. With regard
to blur such that the point spread function can be approx-
imated by the Gaussian function, no matter an image is
blurred, a position of local maximum does not change, and
thus the detection performance for the proposed marker is
not influenced.

Meanwhile, ARToolKit detects a rectangle by ex-
tracting its outline, and then after measuring its length and
breadth, if the rectangle is near a square, it is recognized as
a marker. The reason why the detection performance of the
ARToolKit marker is low is because the marker shape can-
not be recognized as a rectangle after extracting its outline
due to blur. It is considered that ARToolKit further searches
a marker with a correlation value for brightness of its pat-
tern so that the brightness variance causes its performance
deterioration.
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Fig. 9. Result of decoded signal against blurred pattern.

4.2.2 Recognition performance at blur

Data signals of marker and their convolutions to
actual blurred images illustrated in Fig. 8 are shown in
Figs. 9(a) and 9(b), respectively. The applied marker is the
one on the lower right in Fig. 4(a), which is the blurred
image. Referring to Fig. 9(a), it seems that the signals have
waveforms generated by smoothing square waves due to
blur of images. However, it can be found that three sharper
peaks (external, middle, and internal rings) appear in Fig.
9(b). With the phase differences of these three peaks,
decoding can be performed accurately. It is further obvious
that encoding is not deteriorated by brightness applying
M-sequence. From those described above, it is implied that
the proposed marker is robust to blur with regard to the
recognition performance.

4.3 Comparison of detection and recognition
performances for various dispositions
under cluttered background

Experiments were performed under five kinds of
environments, where shadow of objects overlapped with
markers under the cluttered background. Each marker (total
10 markers for one method) was disposed differently for
every shooting by changing its distance from the camera



Table 2. Performance against ground clutter noise and
placement (F-measure)

Marker Detection Decoding
ARToolKit 0.957 0.527
Proposed 0.990 0.921

and its arrangement, so that total 1000 images could be
prepared for one method. The marker (the proposed and
the ARToolKit markers) and the camera were fixed at the
same positions, respectively. Table 2 shows the result. This
table demonstrates that the proposed marker got signifi-
cantly excellent results for both detection and recognition
performances compared to the ARToolKit marker.

Figures 1(b) and 1(d) show examples of results on the
ARTookKit marker and the proposed marker, respectively.
Red frames are drawn to detected ARToolKit markers and
three-dimensional objects are drawn if recognized. Mean-
while, if the proposed markers are detected and recognized,
lines are drawn on the corresponding ring parts. As can
be seen in these figures, the ARTookKit markers are mis-
detected in many points. The two ARToolKit markers in
lower side of the figure are not detected. This is because
patterns cannot be detected precisely due to the shadow by
surrounding objects. The result in Table 2 reflects this cause
remarkably. Therefore, it can be said that the ARToolKit

| @Mput |

(c) Scale: ok*

marker is sensitive to brightness change. Meanwhile, the
proposed marker can be detected accurately even in clut-
tered disposition, and it can be further recognized even
if it is shadowed. From the next section, we consider the
detection performance in cluttered background.

4.3.1 Detection performance in cluttered
background

Figure 10 shows the marker candidates extracted
through a discrimination filter explained in Section 3.1.2.
Arrangements and scales of respective markers are differ-
ent, but it can be found that the centers of these markers
are accurately detected. The number of marker candidates
through a discrimination filter could be controlled to be-
tween about 2 or 3 and about 10 per DoG image in scale
space. The reason why the number of keypoints does not
increase under such a cluttered background is because a
discrimination filter is applied. With the proposed marker,
the candidates can be narrowed down exactly. An excel-
lent point to use the proposed marker is that the detection
can be implemented in the same framework even if vari-
ous arrangements and distances are applied to the marker.
Namely, the comparison between a marker and a template
is not required according to marker’s arrangement and
size.

(b) Scale: ok

Key point R

(d) Scale: 6k®

Fig. 10. Marker candidates by keypoint detection. The red dot indicates a keypoint and the green circle indicates the scale
size. [Color figure can be viewed at wileyonlinelibrary.com]
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Table 3. Evaluation by distance (F-measure)

Distance Detection Decoding
Im 0.985 0.984
2m 1.000 0.876

Table 4. Evaluation by angle at 1 m (F-measure)

Yaw angle Detection Decoding
0 degree 0.985 0.984
30 degree 1.000 0.970
60 degree 1.000 0.942

4.4 Analysis on detection and recognition
performances to marker’s distance

In order to investigate the robustness to distance
of the proposed marker, performance evaluation was per-
formed, where a marker was placed at 1 m and 2 m dis-
tance from a camera. Figure 11(a) shows an experimental
environment. A marker was disposed such that it faced to
front for a camera. A black nonreflective paper was set up
so that nothing was shot except a marker. The size of the
marker in image was 54 and 27 pixels for the distance of 1 m
and 2 m, respectively. Table 3 shows its result on detection
and recognition performances. For both of conditions, high
detection and recognition performances could be obtained.

4.5 Analysis on detection and recognition
performances to marker’s angle

In order to investigate the robustness to angle of the
proposed marker, performance evaluation was performed,
where a marker was placed at 1 m distance from a camera
and the marker was inclined by 0, 30, and 60 degree to the
horizontal direction. Figure 11(b) shows an experimental
environment. Table 4 shows its result on detection and
recognition performances. The detection performance was
not changed with larger angle. This is because the detection
of keypoints is robust to the change of marker’s direction
[8]. As also shown in Fig. 5, the positions of keypoints can
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be detected precisely with inclined markers. Further from
the result, a marker could be detected accurately even in
the case of the inclination of 60 degree. From the results
described above, we confirmed that marker’s centers can
be detected even if it is inclined to a camera.

5. Conclusions

In this paper, we proposed an encoded marker (1)
easy to detect independent on blur and (2) easy to detect
independent on background and disposition. Specifically,
a pattern was designed which is easy to calculate as local
maximum of scale space, and marker detection was real-
ized by keypoint detection of SIFT. We further proposed
a discrimination filter to narrow down marker’s candidates
and a method to correct scale error due to disposition. With
these techniques, we demonstrated that, as the result of
the experiment, a marker can be detected with extremely
high accuracy robust to disposition and blur in cluttered
background. We also confirmed that it is superior to the
ARToolKit marker, which is widely used for robots and
augmented reality.

Different from conventional markers, the comparison
between this marker and multiple templates with different
arrangements and sizes is not required. Therefore, we do
not need to consider the scalability of computational cost
due to disposition, and so on. The advantage is that marker’s
size can be estimated based on scale value of scale space,
and therefore this is applied to the estimation of data de-
coding region of M-sequence code.

A challenge to be solved in the future is to enhance
the recognition accuracy of marker with low resolution
disposed at more distant location. At the detection exper-
iment, the center of marker could be detected with high
accuracy if its resolution was low. However, when a marker
was inclined to a camera, recognition was failed in some
cases because the fitting performance to ellipse and the
accuracy to recalculate scales were not sufficient. Then, it
is considered that an investigation of a method to represent
data only with locations of keypoints is required. Specifi-
cally, we aim to investigate to combine RandomDot marker
[26] with a marker structure proposed in this paper and
M-sequence.

In Table 3, the detection accuracy of the proposed
marker for 2 m was a little lower than that for 1 m, and
in Table 4, that for 30 degree and 60 degree was a little
lower than that for O degree. This is because the scale dealt
in SIFT is discrete value and the size of marker with high
sensitivity is changed according to scale step and initial
scale value. Therefore, we need to investigate Spectral SIFT
[28] which operates scale as continuous values. We further
aim to compare the proposed method with the keypoint
detection method without Gaussian kernel such as AKAZE



[27] and the keypoint detection method unchanged to affine
transformation [29].
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