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Abstract. In the domain of human action recognition (HAR), infrared
data has emerged as a pivotal sensing technology in robotic applica-
tions due to its robust performance under low-light or rapidly changing
lighting conditions. However, HAR methods that depend exclusively on
infrared data fall short due to the lack of color and texture features.
Combining other modal data, such as RGB modality, can alleviate this
problem. In this paper, we introduce a cross-modal knowledge distillation
approach that achieves knowledge transfer by using a teacher network
with RGB data input to guide the recognition of an infrared data student
network. The RGB data is exclusively utilized during the training phase.
To make full use of RGB information, firstly, we construct a multi-scale
graph cross-attention module between different convolutional layers of
the teacher and student networks to reduce the modality difference be-
tween infrared data and RGB data modalities. Secondly, we employ a
decoupled knowledge distillation module (DKD) to focus on more dark
knowledge, i.e., knowledge related to similar behaviors, thereby enhanc-
ing the network’s robustness. We prove the effectiveness of the proposed
approach on two datasets, i.e., NTU RGB+D and PKU-MMD datasets,
providing strong support for the intelligent behavior of robots in various
environments.

Keywords: Human action recognition · RGB videos · Infrared videos.

1 Introduction

As robotics technology rapidly progresses, human action recognition (HAR) sys-
tems are being increasingly adopted in areas such as security monitoring, medical
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care, and human-computer interaction [4],[9],[10]. By recognizing and under-
standing human actions, robots can carry out tasks with enhanced intelligence
and autonomy. However, traditional HAR systems predominantly depend on
RGB data, which offers rich visual information under optimal lighting condi-
tions. Yet, their performance deteriorates significantly in low-light or rapidly
changing lighting environments, thereby restricting the system’s range of appli-
cations. Infrared data, i.e., near infrared data, serves as an excellent alternative
or supplement since it relies on thermal radiation information and is unaffected
by visible light conditions. This allows it to operate reliably across a wide range
of lighting environments.

However, HAR methods that depend exclusively on infrared data also have
limitations. In scenarios where color and texture features are essential, infrared
images sometimes fail to accurately analyze actions due to their absence of these
features. Furthermore, the acquired infrared images frequently suffer from coarse
resolution due to the intrinsic noise interference of the infrared image receiver. In
contrast, RGB data provides clear textures and high-quality images, addressing
the shortcomings of infrared images in human action recognition. By combining
RGB and infrared data, the complementary information from both modalities
can guide infrared action recognition and enhance the performance.

Therefore, we raise a cross-modal knowledge distillation approach that uti-
lizes a teacher-student network to transfer cross-modal knowledge from an RGB
data teacher network to an infrared data network. Notably, the RGB data is in-
volved solely during the training phase. To make RGB data better guide infrared
data recognition, firstly, we construct a multi-scale graph cross-attention module
(MGCAM) in different intermediate convolutional layers to reduce the modality
difference between infrared data and RGB data modalities and obtain the fused
information between heterogeneous data. Then, we employ a decoupled knowl-
edge distillation module (DKD) to obtain the output layer information of the
teacher and student networks according to its relevance to the target, focusing
on more dark knowledge and improving the network’s generalization capabilities.

The primary contributions of this work are as follows:

1) We construct a multi-scale graph cross-attention module across various
intermediate convolutional layers to learn similar features from different modal-
ities.

2) We construct teacher and student networks and use decoupled knowledge
distillation to transfer complementary information from the RGB modality.

3) We showcase the efficacy and viability of our approach via experimental
validation on both the NTU RGB+D and PKU-MMD datasets.

The structure of this paper is outlined as follows: Section II provides a review
of related work. Section III introduces the raised approach. Section IV details
datasets, experimental setup, and results. Lastly, Section V concludes the paper.
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2 Related Work

2.1 Action Recognition based on RGB and Infrared Data

In recent years, there has been a growing interest among researchers in the field
of HAR, largely driven by advancements in deep learning. Extensive research
has been conducted not only in HAR based on RGB data [1],[12],[25],[26] but
also in infrared human action recognition [11],[14]. Nie et al. [16] introduced an
innovative 3D ConvNet featuring a deep architecture and residual structure to
enhance the classification performance of infrared videos. Meng et al. [3] utilized
convolutional neural networks to develop a framework for analyzing human be-
havior around parked aircraft. Additionally, there are also some studies based on
both RGB and infrared data. Zhu et al. [29] explored a feature mapping method
for the same action from the visual spectrum to the infrared range. Hilsenbeck
et al. [7] recorded infrared and visible spectra through Hough forest and con-
structed a multispectral behavioral dataset. Sun et al. [22] proposed a robust
feature matching strategy utilizing feature matching and multi-object tracking
in complex, non-flat environments of infrared-RGB videos. Piao et al. [19] intro-
duced the use of convolutional neural networks (CNNs) to create weight maps
expressing the significance of individual pixels, which are then used for weighted
fusion in action analysis. Quan et al. [20] employed attention relation matching
and activation domain consistency constraints to minimize the modality differ-
ences between RGB and infrared data. Unlike the aforementioned methods, we
consider constructing graph cross-view attention map to learn similar features
across different modalities.

2.2 Knowledge Distillation

Knowledge distillation has received widespread attention due to its ability to
transfer knowledge from larger networks to smaller ones [8]. Park et al. [17]
considered both distance and angular losses to reduce the differences between
different data structures. Tung et al. [24] focused solely on student networks
learning the representational space information of teacher networks rather than
the representational information. Touvron et al. [23] created distillation tokens
leveraging the transformer architecture to enable knowledge distillation. Zhao
et al. [28] decomposed the knowledge distillation loss based on its relevance to
the target and introduced a decoupled knowledge distillation method. Gou et
al. [5] examined the cross-channel features of different samples as well as the
various channels of a single sample. Guo et al. [6] highlighted the significance of
class attention transfer in enhancing the performance of convolutional networks.
Unlike previous knowledge distillation methods, we raise MGCAM across var-
ious feature layers to transfer informations and DKD to focus on more dark
knowledge.
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Fig. 1. The framework of the raised approach. Where TCKD, NCKD, and DKD de-
note target class knowledge distillation, non-target class knowledge distillation, and
decoupled knowledge distillation. Notably, during the testing stage, only the student
network is utilized.

3 Methodology

3.1 Overview

The schematic of our raised approach is depicted in Fig. 1. In our approach, the
teacher network (TN) takes RGB video as input, whereas the student network
(SN) takes infrared video as input. And the TN is involved solely during the
training phase, while only the SN is utilized during the testing phase. To make
full use of RGB information, we construct the MGCAM to merge features from
the intermediate layer of both networks, allowing the integration of different
modalities at the intermediate layers. Moreover, we leverage the DKD module to
extract both positive and negative information from the TN, effectively guiding
the SN in action analysis.

3.2 Multi-scale Graph Cross-Attention Module

To reduce the discrepancies between the modalities of RGB data and infrared
data, we consider the information fusion between feature layers of different scales
from both modalities. Therefore, we raise MGCAM, as shown in Fig. 2. By con-
structing graph structures of different modal features, we utilize graph-based
information to perform cross-view attention calculations, thus capturing the in-
termodal information.
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Fig. 2. The design of the multi-scale graph cross-attention module.

We assume that the ith feature layer of the SN is FS
i ∈ Rb×c×h×w, where

b denotes the batch size, c represents the channel dimension, and h,w are the
height and width of the spatial dimension. The feature layer j of the TN is
FT
j ∈ Rb×c×h×w. Nie et al. [15] demonstrated that manifold learning uses di-

mensionality reduction to extract the intrinsic structure of the data and reduce
the vibration of high-dimensional data. Inspired by [15], we construct graphs
representing the feature FS

i from the ith feature layer of the SN and the feature
FT
j from the jth feature layer of the TN.The features extracted from the feature

layers are viewed as vertices in a graph, where the connections between features
obtained by Gaussian similarity define the edges of the graph. We calculate the
edge weights Eij ∈ Rb×b between feature data through gaussian similarity:

Eij = exp

(
−
∥∥FS

i − FT
j

∥∥2
2

)
. (1)

And then we get the graph matrix Q ∈ Rb×b through graph Laplacian normal-
ization [2].

Q = D− 1
2EijD

− 1
2 , (2)

D ∈ Rb×b is a diagonal matrix, with each diagonal element (n, n) representing
the sum of the corresponding row n in the edge weight matrix.

Then, we use the graph matrices of SN and TN to calculate cross-view atten-
tion weights AS

ij , which capture the similarity between diverse forms of knowl-
edge:

AS
ij = softmax

(
QS

i

(
QT

j

)T
√
d

)
, (3)

where QS
i represents the graph matrix of the i-th feature layer of the SN, and

QT
j represents the graph matrix of the j-th feature layer of the TN. QS

i and QT
j

are obtained by Eq. (2).
The fused feature map WT

j ∈ Rb×c×h×w for the j-th feature layer of the
TN is obtained by combining the feature activation map Aj with the cross-view
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attention weight AS
ij using a linear operation.

WT
j = AS

ijAj . (4)

Similarly, we can get the fused feature map WS
i ∈ Rb×c×h×w for the i-th feature

layer of the SN is:
WS

i = AS
ijAi. (5)

We calculate the mean square error (MSE) loss between the fused feature maps
of the SN and those of the TN. This loss helps in learning the knowledge of the
middle layers:

LMGCAM =
1

k

 k∑
i,j=1

∥∥∥∥∥ WT
j∥∥WT
j

∥∥
2

− Wi
S∥∥Wi
S
∥∥
2

∥∥∥∥∥
2

2

 , (6)

where ∥.∥22 is the MSE calculation, and k is the number of the feature layers for
graph cross-attention computation. To obtain more fusion information of multi-
scale features from RGB modality and infrared modality, we incorporate graph
cross-attention computation into each residual block of both the TN and SN.

3.3 Decoupled Knowledge Distillation Module
During the distillation process, some information is relevant to the target, while
some is not. Therefore, the distillation loss can also be decomposed in terms of
its relevance to the target [28]:

LDKD = αTLTCKD + αNLNCKD, (7)

where αT , αN represent distinct hyperparameters. LTCKD refers to target class
knowledge distillation, while LNCKD is non-target class knowledge distillation.

LTCKD = KL
(
pT
∥∥ pS) , (8)

LNCKD = KL
(
p̂T
∥∥ p̂S) , (9)

where p =
[
pm, p\m

]
∈ R1×2 denotes the binary probability pm of the tar-

get class and the binary probabilities p\m of all other non-target classes. p̂ =

[p̂1, . . . , p̂m−1, p̂m+1, . . . , p̂C ] ∈ R1×(C−1) is independently modeling the proba-
bilities between non-target classes without considering the m-th class. After de-
coupling, the knowledge distillation loss can obtain more dark knowledge from
nontarget classes by LNCKD.

The total loss for training the SN comprises both the decoupled knowledge
distillation loss and the cross-entropy loss LCE between the SN’s output and the
ground truth label. The complete loss function is:

L = LCE + αLDKD + βLMGCAM , (10)

where α, β are the hyperparameters, and LDKD is the decoupled knowledge loss.
The steps of the raised approach are shown in Alg. 1.
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Algorithm 1

INPUT: Action categories, teacher network, student network, the cross-entropy loss
LCE , L

T
CE , the decoubled knowledge distillation loss LDKD, the multi-scale graph

cross-attention loss LMGCAM , learning rate, total iterations and hyperparameters
α, β, αT , αN

OUTPUT: Student network
INITIALIZE: Learning rate, total iterations and hyperparmeters α, β, αT , αN

PRETRAIN TEACHER NETWORK:
for i← 0 to total iterations do

train the teacher network with LT
CE

update: The teacher network parameters
end for

TRAIN STUDENT NETWORK:
for j ← 0 to total iterations do

train the student network based on L = LCE + αLDKD + βLMGCAM

update: The student network parameters
end for

4 Experiments

4.1 Datasets

1) The NTU RGB+D dataset [21] comprises various data types, such as RGB,
skeleton, depth map, and infrared data. It encompasses a total of 60 action classes
and contains over 56,000 videos. In this paper, we select ten daily-life related
categories (drop, throw, stand up, pick up, clap, brush teeth, drink, wash hair,
sit, and eat) to evaluate our approach, as shown in Fig. 3.

2) The PKU-MMD dataset [13] contains data modalities such as RGB, in-
frared data, depth, and 3D joint. It consists of 51 action categories and includes
over 1,000 lengthy videos. For our evaluation, we focus on all RGB and infrared
data categories, assessing our approach’s effectiveness using the mean average
precision (mAP) across cross-view and cross-subject settings.

4.2 Experimental Setup

The teacher network employs ResNet50 as its backbone, whereas the student
network uses ResNet18 as its backbone. For both datasets, the segment is 8.
The batch size of the pretrained teacher network is 16, while that of the student
network is set to 8. For the NTU RGB+D dataset, the learning rate is 0.001,
the hyperparameters α, β, αT , αN values are {0.1, 1, 0.7, 0.35} and the number
of epoch is 80. Similarly, for the PKU-MMD dataset, the learning rate is 0.001,
the values of the hyperparameters {α, β, αT , αN} are {0.01, 1, 0.7, 0.35} and the
number of epoch is 120. All experimental procedures are carried out using the
PyTorch framework on a single NVIDIA RTX 3090 GPU.
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Fig. 3. The examples of NTU RGB+D dataset.

Table 1. The results of the raised approach and the existing methods on the NTU
RGB+D dataset.

Method Teacher Student Teacher Input Student Input Accuracy (%)
TSTDDs [14] - - - IR Videos 72.36

ST [8] ResNet50 ResNet18 RGB Videos IR Videos 74.69
AT [27] ResNet50 ResNet18 RGB Videos IR Videos 74.58
SP [24] ResNet50 ResNet18 RGB Videos IR Videos 76.03
CC [18] ResNet50 ResNet18 RGB Videos IR Videos 75.21

RKD [17] ResNet50 ResNet18 RGB Videos IR Videos 74.38
CCSKD [5] ResNet50 ResNet18 RGB Videos IR Videos 76.24

Ours ResNet50 ResNet18 RGB Videos IR Videos 80.86

4.3 Comparison with Existing Methods

To assess the performance of our raised approach, we benchmark it against state-
of-the-art approaches such as TSN [25], TSTDDs [14], ST [8], AT [27], SP [24],
CC [18], RKD [17], CCSKD [5] on the NTU RGB+D and PKU-MMD datasets.

As illustrated in Table 1 and 2, our approach outperforms existing methods
on both datasets. Our approach achieves an accuracy of 80.86% on the NTU
RGB+D dataset, 4.62% higher than CCSKD [5] method. On the PKU-MMD
dataset, our approach achieves mean Average Precision (mAP) scores of 0.588
and 0.586 for the cross-view and cross-subject strategies, respectively. These
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Table 2. The results of the raised approach and the existing methods on the PKU-
MMD dataset.

Method Teacher Input Student Input Cross-View Cross-Subject
TSN [25] - IR Videos 0.539 0.567
ST [8] RGB Videos IR Videos 0.554 0.574
AT [27] RGB Videos IR Videos 0.562 0.584
SP [24] RGB Videos IR Videos 0.582 0.570
CC [18] RGB Videos IR Videos 0.580 0.567

RKD [17] RGB Videos IR Videos 0.579 0.578
CCSKD [5] RGB Videos IR Videos 0.556 0.565

Ours RGB Videos IR Videos 0.588 0.586

findings suggest that our approach, by combining the MGCAM with the DKD,
successfully mitigates the modality discrepancies and utilizes valuable knowledge
from various teacher network feature layers to enhance the performance.

Moreover, we showcase the confusion matrix generated from the NTU RGB+D
dataset, depicted in Fig. 4. According to Fig. 4, the recognition performance for
the 10 selected actions from the NTU RGB+D dataset notably improves with
the aid of RGB data. Actions like ’pick up’, ’throw’, and ’drink’ show signifi-
cantly enhanced recognition performance. However, the action ’stand up’ shows
relatively lower recognition rate. Among these, actions like ’pick up’ and ’throw’,
known for their extensive motion ranges, exhibit distinct characteristics that aid
in their identification. Unfortunately, there is a 22% probability of misclassifica-
tion, where ’sit’ is erroneously categorized as ’stand up’. This confusion arises
because these two actions are opposites and have a similar intermediate phase,
leading to ambiguity.

4.4 Ablation Study

To evaluate the contributions of the MGCAM and DKD in our approach, we con-
structed 3 variations based on our raised approach: 1) Student network baseline:
The student network is used exclusively, with training and testing conducted us-
ing only infrared data, shown in the 2nd line of Table 3 and Table 4. 2) Ours (w/o
MGCAM): Our raised approach without the multi-scale graph cross-attention
module, shown in the 3rd line of Table 3 and Table 4. 3) Ours (w/o DKD): Our
raised approach without the decoupled knowledge distillation module, shown in
the 4th line of Table 3 and Table 4.

As depicted in Table 3 and Table 4, the MGCAM and DKD modules play
crucial roles in our approach’s performance. From the data presented in the
2nd and 3rd rows of Table 3 and Table 4, it is evident that MGCAM plays
a crucial role. This indicates that bridging the modality gap between infrared
data and RGB data is crucial. Additionally, both Ours (w/o MGCAM) and Ours
(w/o DKD) achieve better performance than the student network baseline. This
demonstrates that the MGCAM and DKD are helpful for information fusion
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Fig. 4. The confuse matrix of NTU RGB+D dataset.

Table 3. The results on the NTU RGB+D dataset. w/o stands for without.

MGCAM DKD Teacher Input Student Input Accuracy (%)
- - - IR Videos 71.20
- ✓ RGB Videos IR Videos 78.60
✓ - RGB Videos IR Videos 80.04
✓ ✓ RGB Videos IR Videos 80.86

Table 4. The results on the PKU-MMD dataset. w/o stands for without, CV stands
Cross-View and CS stands for Cross-Subject.

MGCAM DKD Teacher Input Student Input CV CS
- - - IR Videos 0.539 0.567
- ✓ RGB Videos IR Videos 0.557 0.571
✓ - RGB Videos IR Videos 0.575 0.574
✓ ✓ RGB Videos IR Videos 0.588 0.585

of different modalities and extraction of complementary knowledge to enhance
infrared data analysis.
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5 Conclusion

In this paper, we raise a decoupled knowledge distillation approach using graph
cross-attention. To reduce the modality gap between infrared data and RGB data
modalities, we construct a multi-scale graph cross-attention module that oper-
ates across various convolutional layers of both teacher and student networks,
enabling the learning of analogous features across modalities. Additionally, to
enhance the network’s robustness by leveraging more dark knowledge, we em-
ploy a decoupled knowledge distillation loss. The effectiveness of our approach
is validated on two datasets.
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