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Abstract—This paper focuses on ego-localization using in-
vehicle cameras. We propose a 2D ego-localization method using
streetscape appearance as a feature of image matching and the
triangulation of matching results. The image sequences of two
in-vehicle cameras are matched to a database that contains a
sequence of streetscape images and their corresponding positions.
First, the proposed method searches for images similar to the
input image from the database. Second, vehicle position is
calculated based on triangulation using the positions stored in
the database and the viewing directions of the two cameras. By
assuming that the streetscape appearance changes continuously, a
sequential image matching algorithm is used to improve the ego-
localization accuracy. From experimental results, we confirmed
that the proposed method surpasses the accuracy of a general
GPS and achieved sufficient accuracy to be used for driving lane
recognition.

I. INTRODUCTION

Ego-localization is one of the most important functions
for realizing accurate car navigation or such driver assis-
tance schemes as a collision prevention system. Current car
navigation systems use a general GPS to estimate vehicle
positions. However, such a GPS has error of 5 to 30 meters
due to reflections caused by buildings and occlusions of GPS
signals from satellites. On the other hand, RTK-GPS can
estimate vehicle positions more accurately, but it is sensitive
to occlusion. To overcome these problems, several research
groups have proposed ego-localization methods using such
sensors as sonar [1], laser scanners [2], or cameras [3]. Since
the camera resolution is high, some groups use in-vehicle
cameras for ego-localization[4]. There are two approaches for
this: landmark-based and appearance-based.

Landmark-based approach: This method consists of three
steps: (1) store two- or three-dimensional landmark positions
in a database, (2) detect landmarks from input images and
compare them to the landmarks stored in the database, and
(3) calculate self-position using the relationships between the
landmark positions detected from the input images and the
database. Both artificial features [5] and natural features (i.e.,
corners [6], and SIFT [7]) can be used in this approach. How-
ever, its performance heavily depends on the accuracy of the
landmark detection process. Moreover, putting a huge number
of artificial landmarks in a real environment is difficult.

Appearance-based approach: In this approach, the “ap-
pearance” of an object is used for comparing images [8], [9].
Here, an “appearance” is a view of an object from a certain
position and direction. This approach consists of two steps:
(1) storing images and corresponding positions in a database,
and (2) finding an image having a similar appearance to the
input image from the database and obtaining its corresponding
position. J. Sato et al. [10] applied DP matching (Dynamic
Programming Matching, DTW: Dynamic Time Warping) to
match image sequences from omni-directional cameras for
ego-localization. Using this idea for frame registration, H.
Uchiyama et al. proposed an ego-localization method by
matching an image sequence of a normal camera to that of an
omni-directional camera [11]. Compared with the landmark-
based approach, the appearance-based approach does not re-
quire geometrical object position. However, these methods
cannot estimate a vehicle’s lateral position (Fig. 1), since they
assume that the trajectory of the self-positions is the same as
the trajectory when the database was constructed.

To solve this problem, we propose a 2D ego-localization
method using appearances as the features of image matching
and the triangulation of the matched results. The proposed
method consists of three steps:

1. Store a sequence of streetscape images and correspond-
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Fig. 1. Problem of appearance-based approach. Previous methods cannot
estimate the lateral position of a vehicle, since they assume that the trajectory
of self-positions is the same as the trajectory when database was constructed.
We propose a 2D ego-localization method by triangulation using appearance
as features of image matching.
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Fig. 2. Streetscape images can be obtained along the street. Therefore, a
sequential image matching algorithm is used to improve accuracy.

ing positions in a database
2. Find images in the database that resemble the input

images from the two cameras

• A sequential image matching algorithm is used for
improving the accuracy

3. Estimate the vehicle position by triangulation using the
database positions and the viewing directions of the two
cameras

In Section II, the details of the proposed method are
described. Section III introduces the experiments, and Section
IV discusses their results. Finally, we conclude the paper in
Section V.

II. EGO-LOCALIZATION USING STREETSCAPE IMAGE

SEQUENCES

Our proposed method is composed of the following:

• Database construction stage
• Ego-localization stage

In the database construction stage, streetscape images and
corresponding positions are obtained by a special vehi-
cle equipped with an omni-directional camera. In the ego-
localization stage, the proposed method compares input images
with the image sequence of the database and finds positions
corresponding to those input images. In this stage, we use two
in-vehicle normal cameras with different viewing directions.
Since the vehicle runs along a street, a sequential image
matching algorithm is used to improve the precision of this
process (Fig. 2). Finally, vehicle position is calculated by
triangulation using the database positions and the viewing
directions of the two cameras.

Figures 3(a), (b), and (c) show examples of streetscapes
at positions P1, P2, and P3 obtained by an omni-directional
camera. The rectangles indicate the views from normal cam-
eras. As shown in the figures, we can assume that an image
from camera 1 at P1 is similar to the streetscape image
obtained at P2. Likewise, an image from camera 2 at P1 should
resemble that at P3. From these assumptions, we calculate the
coordinates of P1 based on triangulation using the viewing
directions of cameras 1 and 2 and the coordinates of P2 and
P3.

In this paper, the intrinsic parameters, the viewing direc-
tions, and the positions of the in-vehicle cameras are obtained
before applying the above method. Figure 4 illustrates the flow
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Fig. 3. Triangulation using streetscape images. Rectangles indicate views
from normal cameras. Vehicle position P1 is estimated by database positions
P2, P3, and camera directions.
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Fig. 4. Flow chart of proposed method. It consists of database construction
and ego-localization stages.

chart of the proposed ego-localization method. The following
sections describe the details of the method.

A. Database Construction

The database construction stage consists of the following
three steps:

• Collection of streetscape images and corresponding posi-
tions by a special vehicle

• Regularization of frame velocity
• Spherical projection of streetscape images

The database used in our work consists of a sequence of
images and their corresponding positions. These data are ob-
tained by a special vehicle equipped with an omni-directional
camera and a GPS. To simplify the matching process as much
as possible, we assume that the velocity calculated by ego-
localization roughly equals that in the database. To support
this, the frame velocity of the sequence is regularized by
resampling the image sequence so that the intervals between
frames are constant in distance. Finally, the images are pro-
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Fig. 5. Variation of appearance is approximated by translation and scaling.
Rectangular in (a) shows input camera view, and (b) shows its corresponding
area.

jected onto a spherical coordinate system to regularize the
optical characteristics of the camera.

B. Ego-localization

As shown in Fig. 4, the ego-localization stage consists of
the following three major steps:

1. Sequential image matching by DP matching
2. Adjustment of matching based on the constraints between

the two cameras
3. Ego-localization based on triangulation

The proposed method uses two image sequences obtained from
two in-vehicle cameras with different viewing directions. In
the first step, each of these image sequences is compared with
the image sequence in the database. This process is performed
by DP matching. In the second step, the DP matching results
are combined and adjusted to reduce the matching error of
each camera. The positions stored in the database are obtained
as adjustment results. In the third step, vehicle position is
calculated using the positions stored in the database and the
viewing directions of the two cameras.

1) Sequential Image Matching by DP matching
DP matching computes the cost between the current input

frame and an arbitrary database frame. A modified edge-free
DP matching is used for this DP matching. Before applying
the following processes, the input images are projected onto a
spherical coordinate system in the same way as in the database
construction stage. All of the following processes are applied
to the spherical polar coordinates.

a) Approximation of appearance variations caused by
different camera positions: Variation of the appearances is
observed in the input image when their view positions are
different. Therefore, by assuming a weak-perspective camera,
we approximate this variation as vertical translation on the
spherical polar coordinates (Fig. 5). Similarly, image scaling
is applied to approximate the variation caused by changing the
distance between the camera and an object.

b) DP matching preserving the continuity of appearance
variations: Both the input and database image sequences are
matched with the translation and scaling parameters. Since a
vehicle moves continuously, we assume that these parameters
also change continuously. Under this assumption, matching
of the two image sequences is calculated by DP matching
between the one- and three-dimensional patterns used in [11].
This DP matching, which is an extension of matching for

one- and two-dimensional patterns [12], provides us with
the matching between input image frames 0, 1, . . . , τ0 and
database image frames 0, 1, . . . , t, . . . , T . As a result, the
proposed method obtains the correspondence between input
frame τ0 and database frame t, together with its cost with the
parameters of translation x and scaling s.

c) DP matching algorithm: For image comparison, the
color components of the image are normalized to handle color
variations caused by differences of devices and circumstances
by equalizing the color histogram of the image.

The proposed method uses the Sum of Absolute Difference
(SAD) of a color image to calculate distance d(x, s, t, τ)
between input image I1(τ) and database image I2(x, s, t), and
the distance is defined as

d(x, s, t, τ) = SAD{I1(τ), I2(x, s, t)}, (1)

where x (0 ≤ x ≤ X−1) and s (0 ≤ s ≤ S−1) are translation
and scaling parameters, respectively.

The details of the DP matching algorithm are shown below.
(Step 1) Initialize g(·) as

g(−1, s, t, τ) = g(x,−1, t, τ)
= g(X, s, t, τ) = g(x, S, t, τ)
= ∞

(2)

g(x, s,−i, τ) = ∞ (i = 1, 2, . . . , ts). (3)

(Step 2) Apply the following process for τ = 0, 1, . . . , τ0.
• τ = 0

g(x, s, t, 0) = d(x, s, t, 0). (4)

• τ ≥ 1

g(x, s, t, τ) = min
−1≤xp≤1
−1≤sp≤1
0≤tp≤ts

{

g(x − xp, s − sp, t − tp, τ − 1)
+w(xp, sp, tp, τ)d(x, s, t, τ)}. (5)

(Step 3) Output cost g(x, s, t, τ0) with parameters x and s.

Here, w(xp, sp, tp, τ) is a weight factor for penalizing
the DP path. Based on the maximum velocity of the ego-
localization vehicle and the intervals in the database, we adjust
parameter ts for controlling the slope of the DP path.

2) Adjustment of matching based on constraints between
the two cameras

The results of the above edge-free DP matching may be
inconsistent due to noise. To avoid this problem, our proposed
method reduces the mismatch based on the following assump-
tions and the combination of the two DP matching results.

• Assumption 1: Vehicle’s movement is continuous
• Assumption 2: Vehicle’s forward movement is much

larger than its lateral movement

We indicate the database frames of cameras 1 and 2 as t1 and
t2, respectively. Assumption 1 induces that both t1 and t2
are continuous, while assumption 2 induces that the variation
of the value t1 − t2 is kept small because the variation of
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Fig. 6. Adjustment of matching based on constraints between two cameras:
(a) The proposed method tries to avoid irregular paths which do not satisfy
the assumptions. (b) (t1, t2) for each τ should be aligned on the straight line.

the distance between P2 and P3 in Fig. 3 is kept small. The
proposed method tries to avoid irregular paths which do not
satisfy the assumptions (Fig. 6 (a)).

The detail implementation is as follows. When a frame t
in the database is matched with an input frame τ , its cost is
defined as

f(t, τ) = min
x,s

g(x, s, t, τ)
τ + 1

, (6)

where (τ+1) is the regularization factor. This cost is calculated
for both cameras 1 and 2, which are denoted as f1(t1, τ) and
f2(t2, τ), respectively. The cost for selecting t = (t1, t2) is
calculated by the combined distance

F (t, τ) = f1(t1, τ) + f2(t2, τ). (7)

Then, ti are sought by minimizing the function

G(τ) = min
t1,t2,...,tτ

τ∑
i=1

F (ti, i). (8)

Here, Eq. (8) is minimized by changing t1, t2, . . . , tτ . From
Assumptions 1 and 2, (t1, t2) for each τ should be aligned
near the straight line (Fig. 6 (b)). Therefore, the combinations
of ti = (t1,i, t2,i) should satisfy

(t1,i, t2,i) ∈
{

(t1,i−1 + 0 , t2,i−1 + 0),

(t1,i−1 + 1 , t2,i−1 + 1),
(t1,i−1 + 2 , t2,i−1 + 2),
(t1,i−1 + 3 , t2,i−1 + 3), (9)

(t1,i−1 + 2 , t2,i−1 + 3),

(t1,i−1 + 3 , t2,i−1 + 2)
}

.

Equation (8) can be solved using dynamic programming [13].
Finally, we obtain the optimal frame pair tτ = (t1,τ , t2,τ ) for
input frame τ .

3) Ego-localization Based on Triangulation
Vehicle position is estimated from the database positions

obtained in the previous section as follows. Figure 7 shows
database positions A(xA, yA) and B(xB , yB) that are obtained
from the images of cameras 1 and 2. Exact vehicle position
(x1, y1) is estimated by solving

y1 + w1 − yA = (x1 − xA) tanα1, (10)

y1 + w1 − yB = −(x1 − xB − d1) tanα2, (11)

Vehicle

Camera 1
1α2α 1d

),( AA yxA),( BB yxB
Position in 
database 2

1w
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Position in 
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Camera 2

Forward

Fig. 7. Vehicle position (x1, y1) is calculated by database positions A and
B, viewing directions α1 and α2, the distance between the vehicle’s center
line and the normal cameras w1, and the distance between the two normal
cameras d1.

TABLE I
OMNI-DIRECTIONAL CAMERAS USED TO CREATE DATABASE

Omni-directional camera Height h2 Frame rate
(Omni I) VStone VS-C14N 1.5 m 30 fps
(Omni II) PointGreyResearch Ladybug2 2.0 m 15 fps

where α1 and α2 are the viewing directions of cameras 1 and
2, w1 is the distance between the vehicle’s center line and
the cameras, and d1 is the distance between the two normal
cameras. Finally, the moving average of the lateral positions
is calculated.

III. EXPERIMENTS

A. Conditions for Experiments

We conducted an experiment to evaluate the following:

• Estimation error on forward and lateral positions
• Recognition rate of driving lane

In addition, we compared the accuracy of the proposed method
with a general GPS.

The positions of the in-vehicle cameras are shown in Fig. 8
and 9. The omni-directional camera used for the database
construction was attached on top of the vehicle’s roof. The two
types of omni-directional cameras shown in TABLE I were
tested to observe the effect of camera position and resolution
difference.

Next, the conventional DV cameras used for the ego-
localization stage were attached to the vehicle’s side window.
The focal lengths were 44.7 mm for the forward camera and
48 mm for the backward camera. The frame rates were 30 fps.
The camera positions on the vehicle were w1 = 0.5 m,
d2 = 0.2 m, and h1 = 1 m.

TABLE II shows the datasets used in this experiment. Dur-
ing database acquisition, the vehicle kept running in the same
lane. The length of the path was approximately 300 m. We
prepared two types of datasets for evaluation. The image se-
quences for the database construction and the ego-localization
stages were obtained under the following conditions.

• at the same time
• at different times

In the first condition, the cameras for both the database
construction and ego-localization stages were mounted on the
same vehicle at the same time to obtain identical trajectories
in each stage. Datasets A-I and A-II, which were obtained in
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TABLE II
DATASETS PREPARED FOR EVALUATION

Dataset
Data acquisition for DB Driving lane Camera

and ego-localization for DB for Ego-localization for DB
A-I Same Left Left Omni I
A-II Same Right Right Omni I
B-I Different Left Left Omni I
B-II Different Left Right Omni I
C-I Different Left Left Omni II
C-II Different Left Right Omni II

the first condition, were used to evaluate the estimation error
of the lateral position within the driving lane. Datasets B-I,
B-II, C-I, and C-II, obtained in the second condition, were
used to evaluate the estimation error of the forward position
and the recognition rates of the driving lanes.

For the ground truth and the database construction, we
used the coordinates obtained from a general GPS, which
were later corrected manually. The database images were
resampled so that the vehicle position intervals become 0.4 m.
The DP matching parameter was determined by a preliminary
experiment; translation parameter x had 35 steps in 1.44◦,
and scaling parameter s had 13 steps in 0.03 times. Weighting
factor w(xp, sp, tp, τ) was 1.1 if xp �= 0 or sp �= 0, otherwise
1.0. We manually measured the viewing directions of the two
in-vehicle cameras, and α1 = 35◦ and α2 = 32◦ were used
for the ego-localization stage.

B. Results

Figure 10 shows the estimation error of the vehicle’s for-
ward positions. Figures 11 and 12 show the lateral estimation
errors from datasets A-I and A-II. The positive values in
Fig. 11 correspond to the vehicle’s left side. Figure 13 shows
examples of the estimated lateral positions from obtained
datasets B-I and B-II. The recognition rates of the driving lane
from B-I, B-II, C-I, and C-II are shown in TABLE III. They
were calculated by approximating the width of the driving lane
as 3.0 m. If lateral position x was estimated between −4.5 m to
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Fig. 10. Forward estimation error evaluated by datasets B-I, B-II, C-I, and
C-II. Graph label shows dataset, driving lane in ego-localization stage, and
camera for database construction stage.
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Fig. 11. Lateral estimation error evaluated by datasets A-I and A-II. This
distribution is shown in Fig. 12.

−1.5 m, it was classified as the right driving lane. Similarly,
if −1.5 m ≤ x ≤ 1.5 m, it was classified as the same lane,
and if 1.5 m ≤ x ≤ 4.5 m, it was classified as the left lane.
In Fig. 13, areas separated by dashed lines indicate lateral
position x corresponding to each driving lane.

The computation time was 0.5 sec for processing one frame
on Core 2 Quad Q9550 2.83 GHz CPU with 4 GB memory.

IV. DISCUSSION

This section discusses the effects caused by the differences
of driving lanes and cameras.

A. Difference of Driving Lane

We observed that our proposed method’s accuracy is much
higher than that of a general GPS. For example, in Fig. 10, the
forward location estimation by the proposed method with less
than 2 m error was twice as much as that by a general GPS. On
the other hand, the results of lateral location estimation from
datasets A-I and A-II show that the maximum error is less
than 1.5 m (Fig. 12). Figure 12 also shows that the estimation
error of the right lane was larger than the left lane. Maybe the
distance between the vehicle and the objects along the street
affected the accuracy of the image matching.

From the results of datasets B-I, B-II, C-I, and C-II, we ob-
served that accuracy decreases when the vehicle takes different
lanes at the database construction and ego-localization stages
(TABLE III, Fig. 10), perhaps because the appearance changed
due to different viewing positions. The proposed method
assumed a weak-perspective camera, but this assumption tends
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TABLE III
RECOGNITION RATE FOR DRIVING LANE (DATABASE: LEFT LANE)

Camera for DB Left lane Right lane
Omni I 100 % (dataset B-I) 93 % (dataset B-II)
Omni II 100 % (dataset C-I) 85 % (dataset C-II)

to fail when both nearby and distant objects appear in an image
(Fig. 14). One solution for this problem is estimating vehicle
position from the velocity and discarding the DP matching
result when the system detects a decline of similarity between
input and database images.

B. Differences between Cameras

Comparing the results of datasets B-I and B-II and datasets
C-I and C-II, we observed that the influence of the height of
the camera positions and the camera type is small (TABLE
III, Fig. 10). The following two reasons might explain this.

First, although the appearances may differ, since the vehicle
moves horizontally, the vertical edges played a more prominent
role than the horizontal edges, especially in the forward
location estimation (Fig. 15).

Second, as seen in Fig. 15, the resolution of (b) was lower
than (c). Image matching accuracy did not decline significantly
since the distance calculated by SAD is not affected much by
resolution degradation.

V. CONCLUSION

We proposed a 2D ego-localization method using appear-
ance as a feature of image matching and the triangulation
of the matching result. To improve the ego-localization ac-
curacy, a sequential image matching algorithm was used. As
experimental results, maximum error of the lateral position
less than 1.5 m was observed, and the recognition rate of the
driving lane was about 85 to 100 %. Future work includes
investigating a robust feature against changes of appearance
and experiments using more data, also we will try to deal
with a large streetscape image database.
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