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Abstract. The problem of automatically learning object models for recognition and pose estimation 
is addressed. In contrast to the traditional approach, the recognition problem is formulated as one 
of matching appearance rather than shape. The appearance of an object in a two-dimensional image 
depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. 
While shape and reflectance are intrinsic properties and constant for a rigid object, pose and 
illumination vary from scene to scene. A compact representation of object appearance is proposed 
that is parametrized by pose and illumination. For each object of interest, a large set of images is 
obtained by automatically varying pose and illumination. This image set is compressed to obtain a 
low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. 
Given an unknown input image, the recognition system projects the image to eigenspace. The object 
is recognized based on the manifold it lies on. The exact position of the projection on the manifold 
determines the object's pose in the image. 

A variety of experiments are conducted using objects with complex appearance characteristics. 
The performance of the recognition and pose estimation algorithms is studied using over a thousand 
input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions 
and the number of learning samples is analyzed. For the objects used, appearance representation in 
eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose 
estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects 
in the database has been developed. The paper is concluded with a discussion on various issues 
related to the proposed learning and recognition methodology. 

1 Introduction 

One of the primary goals of an intelligent 
vision system is to recognize objects in an 
image and compute their poses in the three- 
dimensional scene. Such a recognition system 
has wide applications ranging from visual in- 
spection to autonomous navigation. For a vision 
system to be able to recognize objects, it must 
have models of the objects stored in its memory. 
In the past, vision research has emphasized the 
use of geometric (shape) models (Besl and Jain 
1985; Chin and Dyer 1986) for recognition. In 
the case of manufactured objects, these models 
are sometimes available and are referred to as 

computer aided design (CAD) models. Most 
objects of interest, however, do not come with 
CAD models. Typically, a vision programmer is 
forced to select an appropriate representation 
for object geometry, design object models using 
the representation, and then manually input this 
information into the system. This procedure is 
cumbersome and impractical when dealing with 
large sets of objects, or objects with complex ge- 
ometric properties. It is clear that recognition 
systems of the future must be capable of acquir- 
ing object models without human assistance. In 
other words, they must be able to automatically 
learn objects of interest. 

Visual learning is clearly a well-developed and 
vital component of biological vision systems. If a 
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human is handed a three-dimensional object and 
asked to visually memorize it, he or she would 
rotate the object and study its appearance from 
different directions. While little is known about 
the exact representations and techniques used by 
the human mind, it is clear that the overall ap- 
pearance of the object plays a critical role in its 
perception. Some recent psychophysical findings 
indicate that the human visual system represents 
objects by a set of two-dimensional views rather 
than a single object-centered three-dimensional 
model (Tarr and Pinker 1989; Edelman et at. 
1989). 

In contrast to biological systems, machine vi- 
sion systems today have little or no learning 
capabilities. Only recently has visual learning 
for recognition emerged as a topic of research 
interest. The following is a brief sampling of 
recent results. Poggio and Girosi (Poggio and 
Girosi 1990) have analyzed the general prob- 
lem of learning a function from a set of data 
points. They proposed a three-layered network, 
called the regularization network, that learns the 
mapping between an input space and an output 
space. This network was used by Poggio and 
Edelman (Poggio and Edelman 1990) to recog- 
nize three-dimensional stick figures from two- 
dimensional images. Subsequently, Edelman 
and Weinshall (Edelman and Weinshall 1991) 
demonstrated the use of a ~,o-layered network 
for representing objects from multiple views us- 
ing unsupervised Hebbian relaxation. Taking 
a different approach, Turk and Pentland (Turk 
and Pentland 1991) developed a face recogni- 
tion system that uses principal component anal- 
ysis to learn and recognize images of human 
faces. UUman and Basri (Ullman and Basri 
1991) showed that three views of an object 
can be used to represent its boundaries. The 
projection of the object's boundaries in other 
views can be expressed as a linear combina- 
tion of the three model views provided the 
correspondence between points in all views is 
known. Using range images, Fan et al. (Fan 
et al. 1987) have developed a system that auto- 
matically generates surface descriptions of 3-D 
objects for recognition. In the context of as- 
sembly planning, Ikeuchi and Suehiro (Ikeuchi 
and Suehiro 1992) have proposed a system that 
learns assembly sequences from range images 

of a human operator in action and generates a 
program that enables a manipulator to perform 
the same task. 

This paper presents a technique for automat- 
ically learning three-dimensional objects from 
their appearance in two-dimensional images. 
The appearance of an object is the combined 
effect of its shape, reflectance properties, pose 
in the scene, and the illumination conditions. 
Recognizing objects from brightness images is 
therefore more a problem of appearance match- 
ing rather than shape matching. This observa- 
tion lies at the core of our work. While shape 
and reflectance are intrinsic properties that do 
not change for any rigid object, pose and illumi- 
nation vary from scene to scene. We approach 
the visual learning problem as one of acquiring 
a compact model of the object's appearance un- 
der different poses and illumination directions. 
The object is "shown" to the image sensor in 
several orientations and illumination directions. 
This can be accomplished using, for example, 
two robot manipulators; one to rotate the object 
while the other varies the illumination direction. 
The result is a very large set of object images. 
These images could either be used directly or 
after being processed to enhance object charac- 
teristics. Since all images in the set are of the 
same object, consecutive images are correlated 
to a large degree. The problem then is to com- 
press the large image set to a low-dimensional 
representation of object appearance. 

A well-known image compression or coding 
technique is based on principal component anal- 
ysis. Also known as the Karhunen-Loeve trans- 
form (Oja 1983; Fakunaga 1990), this method 
computes the eigenvectors of an image set. The 
eigenvectors form an orthogonal basis for rep- 
resenting individual images in the set. Though 
a large number of eigenvectors may be required 
for very accurate reconstruction of an object 
image, only a few eigenvectors are generally 
sufficient to capture the significant appearance 
characteristics of an object. These eigenvectors 
constitute the dimensions of what we refer to 
as the eigenspace of the image set. From the 
perspective of machine vision, the eigenspace 
has a very attractive property. It is optimal 
in a correlation sense: If any two images from 
the set are projected to eigenspace, the distance 
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between the corresponding points in eigenspace 
is a measure of the similarity of the images in 
the 12 norm. In machine vision, the Karhunen- 
Loeve method has been applied primarily to 
two problems; handwritten character recognition 
(Murase et al. 1981) and human face recogni- 
tion (Sirovich and Kirby 1987; Turk and Pent- 
land 1991). These applications lie within the do- 
main of pattern classification and do not address 
the problem of learning complete parametrized 
models of objects. 

In this paper, we develop a continuous and 
compact representation of object appearance 
that is parametrized by the variables, namely, ob- 
ject pose and illumination. This new representa- 
tion is referred to as the parametric eigenspace. 
First, an image set of the object is obtained 
by varying pose and illumination in small in- 
crements. The image set is then normalized 
in brightness and scale to achieve invariance to 
image magnification and illumination intensity. 
The eigenspace for the image set is constructed 
by computing the most prominent eigenvectors 
of the set. Next, all object images (learning sam- 
ples) are projected to eigenspace to obtain a set 
of points. These points lie on a manifold that is 
parametrized by pose and illumination. In our 
implementation, the manifold is computed from 
the discrete points using cubic spline interpola- 
tion. It is important to note that this parametric 
representation of an object is obtained without 
prior knowledge of the object's shape and re- 
flectance properties. It is generated using just 
a sample of the object. 

Each object is represented as a paramet- 
ric manifold in two different eigenspaces; the 
universal eigenspace and the object's own 
eigenspace. The universal eigenspace is com- 
puted using image sets of all objects of inter- 
est to the recognition system, and the object 
eigenspace is computed using onty images of an 
object. The universal eigenspace is best suited 
for discriminating between objects, whereas the 
object eigenspace is better for pose estimation. 
Recognition and pose estimation can be sum- 
marized as follows. Given an image consist- 
ing of an object of interest, we assume that 
the object is not occluded by other objects and 
can be segmented from the remaining scene. 
The segmented image region is normalized in 

scale and brightness, such that it has the same 
size and brightness range as the images used in 
the learning stage. This normalized image is 
first projected to universal eigenspace to iden- 
tify the object. After the object is recognized, 
the image is projected to the object's eigenspace 
and the location of the projection on the ob- 
ject's parametrized manifold determines its pose 
in the scene. Two different techniques have 
been tested for determining the closest mani- 
fold point, one is based on binary search and 
other uses an input-output mapping network. 

Object learning requires the acquisition of 
large image sets and the computationally inten- 
sive process of finding eigenvectors. However, 
learning is typically done off-line and hence can 
afford to be relatively slow. In contrast, recog- 
nition and pose estimation are often subject 
to severe time constraints, and the proposed 
approach offers a very simple and computation- 
ally efficient solution. Extensive experimenta- 
tion has been conducted to demonstrate the 
robustness of the parametric eigenspace repre- 
sentation. We conclude with a discussion on the 
merits and limitations of the proposed learning 
and recognition technique. 

2 Visual Learning of Objects 

In this section we describe the learning of object 
models using the parametric eigenspace repre- 
sentation. First, we discuss the acquisition of 
object image sets. Eigenspaces are computed 
using the image sets and each object is repre- 
sented as a parametric manifold. Throughout 
this section, we will use a sample object to il- 
lustrate the learning process. 

2.1 Normalized lmage Sets 

While constructing image sets we need to en- 
sure that all images of the object are of the 
same size. Each digitized image is first seg- 
mented (using a threshold) into an object region 
and a background region. The background is 
assigned zero brightness value and the object 
region is re-sampled such that the larger of its 
two dimensions fits a pre-selected image size. 
We now have a scale normalized image. This 
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image is written as a vector ~ by reading pixel 
brightness values in a raster scan manner: 

= [~1, ~ 2 , . . . ,  ~N] T (1) 

This vector represents an unprocessed bright- 
ness image. Alternately, processed images such 
as smoothed images, first derivatives, Laplacian, 
power spectrum of the brightness image, or any 
weighted combination of such images may be 
used in place of the brightness image. The im- 
age type is selected based on its ability to capture 
distinct appearance characteristics of the objects 
of interest. Here, for the purpose of develop- 
ing the learning method we use raw brightness 
images, bearing in mind that the same method 
is directly applicable to any image type. 

Unlike an object's shape and reflectance prop- 
erties, its pose and illumination are expected to 
vary from scene to scene. If the illumination 
conditions of the environment are constant, ap- 
pearance is affected only by object pose. Here, 
we assume that the object is illuminated by the 
environment's ambient lighting as well as one 
additional distant light source whose direction 
may vary. Thus, all possible appearances of 
the object can be captured by varying its pose 
and the light source direction with respect to 
the viewing direction of the sensor. We denote 

v(v) where r is the rotation or each image as ~'r,l 
pose parameter, I is the illumination direction, 
and p is the object number. The complete im- 
age set obtained for an object is referred to as 
the object image set: 

{~(v) v(1,) ,(v) ~(p) 1. 
1 , 1 ' " " "  , ' ~ R , 1 ,  ~ 1,2 , ' ' ' ,  R,LJ ( 2 )  

Here, R and L are the total number of discrete 
poses and illumination directions, respectively. 
If a total of P objects are to be learned by the 
recognition system, we can define the universal 
image set as the union of all object image sets: 

{ ,~, (1) . ( 1 )  . ( 1 )  -~ ( ~ ,  (3) 
A 1,1'  " " " , ~ R , I ~  1,2'  " ' "  

~(z) ~(2) ,(2) ,~(2), 
1 ,1 ' "  "" ~'XR, l '  ~ 1,2~ ' • ' R,L 

~-(P) ~(P) .(P) , ~ ( P )  "1, 
1,1 ~ ' ' ' ~ r ' R , 1  ~ 1 , 2  ~ ' ' "  R~LJ  

It is assumed that the imaging sensor used for 
learning and recognition has a linear response, 

i.e. image brightness is proportional to scene 
radiance. It is also desirable that our recogni- 
tion system be unaffected by variations in the 
intensity of illumination or the aperture of the 
imaging system. This can be achieved by nor- 
malizing each image, such that, the total energy 
contained in the image is unity, i.e. [[x][ = 1. 
This brightness normalization transforms each 
measured image ~ to a normalized image x: 

x = [xl, x2,. . . ,  xN] x (4) 

where: 

1 I N 
'O,=1 

The above described normalizations with respect 
to scale and brightness give us normalized object 
image sets and a normalized universal set. In 
the following discussion, we will simply refer to 
these as the object and universal sets. 

In practice, image sets can be obtained in 
several ways. If the geometrical model and 
reflectance properties of an object are known, 
its images for different pose and illumination 
directions can be synthesized using well-known 
rendering algorithms. Here, we do not assume 
that object geometry and reflectance are given. 
Instead, we assume that we have a sample of 
each object that can be used for learning. One 
approach then is to use two robot manipulators; 
one grasps the object and shows it to the sensor 
in different poses while the other has a light 
source mounted on its end-effector and is used 
to vary illumination direction. 

In our experiments, we have used the setup 
shown in Figure 1. The object is placed on a 
motorized turntable and its pose is varied about 
a single axis, namely, the axis of rotation of the 
turntable. The turntable position is controlled 
via software and can be varied with an accuracy 
of 0.1 degrees. Most objects have a finite num- 
ber of stable configurations when placed on a 
planar surface. For such objects, the turntable 
is adequate as it can be used to vary pose for 
each of the object's stable configurations. Il- 
lumination direction is varied using the robot 
manipulator seen in Figure 1. 

Figure 2 shows half the image set obtained 
by rotating the object in Figure i through 90 
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Fig, 1, Setup used to automatically acquire image sets. The 
object is placed on a motorized turntable. 

discrete poses (4 degrees apart). Each image 
is 128 x 128 pixels in size and is normalized in 
scale and brightness as previously described. A 
similar image set is obtained for each illumi- 
nation direction. In our experiments, we have 
used a total of 5 light source directions. Each 
object image set therefore has a total of 450 im- 
ages. Note that these images can be discarded 
after the object's appearance representation is 
computed. 

2.2 Computing Eigenspaces 

Our first step is to compress the large image sets 
into low-dimensional subspaces that capture the 

gross appearance characteristics of objects. A 
suitable compression technique is based on the 
Karhunen-Loeve expansion (Fukunaga 1990). 
We compute two types of subspaces; the univer- 
sal eigenspace that is obtained from the univer- 
sal image set, and object eigenspaces computed 
from individual object image sets. 

To compute the universal eigenspace, the av- 
erage e of all images in the set is subtracted 
from each image. This ensures that the eigen- 
vector with the largest eigenvatue represents the 
dimension in eigenspace in which the variance of 
images is maximum in the correlation sense. In 
other words, it is the most important dimension 
of the eigenspace. A new image set is obtained 
by subtracting e from each image: 

X A .i-x(1 ) _(1) ,X (P) -- e} t 1,1 - e,,,2,1 - c,...,x~,~ - c , . . .  Rr 

(6) 

The image matrix X is N x M, where M = RLP 
is the total number of images in the universal 
set, and N is the number of pixels in each image. 
Next, we define the covariance matrix: 

Q ~ XX T (7) 

This matrix is N x N, clearly a very large ma- 
trix since a large number of pixels constitute 

Fig. 2. Image set obtained by rotating the object in Figure 1 about a single axis. These images are scale and brightness normalized. 
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an image. The eigenvectors ei and the corre- 
sponding eigenvalues hi of Q are determined by 
solving the well-known eigenstructure decompo- 
sition problem: 

liei = Qei (8) 

Though all N eigenvectors are needed to rep- 
resent images exactly, only a small number 
(k << N) is generally sufficient for capturing the 
primary appearance characteristics of the objects. 
These k eigenvectors correspond to the largest 
k eigenvalues of Q and constitute the universal 
eigenspace. How many dimensions should the 
eigenspace have in order for us to represent im- 
ages with adequate accuracy? One approach is 
to select k such that the first k eigenvectors of Q 
capture important appearance variations in the 
image set, that is: 

k 
~i=1 hi > T1 (9) 

N 

where the threshold T1 is close to, but less than, 
unity. Note that our covariance matrix is positive 
definite and thus the eigenvalues are also pos- 
itive. For the objects used in our experiments, 
eigenspaces with 20 or less dimensions (k _< 20) 
are found to be quite adequate. Since the uni- 
versal eigenspace is computed using images of 
all objects, it is tuned to discriminate between 
images of different objects. 

Computing the eigenvectors of a large ma- 
trix such as Q can prove computationally inten- 
sive. Practical solutions to this problem have 
been investigated in the areas of image com- 
pression and pattern recognition. A few effi- 
cient algorithms are described in Appendix A. 
In our experiments, we have used the STA 
algorithm (see Appendix A). The result is a 
set of eigenvalues {)~i ] i = 1 ,2 , . . . ,k}  where 
{),1 > ~2 _> "'" >__ Ak}, and a corresponding set 
of eigenvectors {ei l i = 1,2, . . . ,h}.  Note that 
each eigenvector is of size N, i.e. the size of an 
image. 

Once an object has been recognized, we are in- 
terested in finding its pose in the image. The ac- 
curacy of pose estimation depends on the ability 
of the recognition system to discriminate between 
different images of the same object. Hence, pose 
estimation is best done in an eigenspace that is 

e l  ()~ =82.6)  e2  (9~2 =54.4)  e3  (it3 = 19.9) 

e4 (& = 14.5) e5 (X5 = 10.7) e6 ()-6 = 9.4) 
Fig. 3. Eigenvectors corresponding to the six largest eigen- 
values computed for the image set shown in Figure 2. 

tuned to the appearance of a single object. To 
this end, we compute an object eigenspace from 
each of the object image sets. The procedure 
for computing object eigenspaces is identical to 
that used for the universal eigenspace. In this 
case, the average e (v) of all images of object 
p is subtracted from each of the object's im- 
ages. The resulting images are used to com- 
pute the covariance matrix Q(V). The eigenvec- 
tors {e} v) l i = 1 ,2 , . . . ,k} of Q(V), correspond- 
ing to the k largest eigenvalues, constitute the 
eigenspace of object p. As an example, Figure 3 
shows six eigenvectors (shown as images) com- 
puted from the image set in Figure 2. The 
eigenvectors are displayed in descending order 
of their eigenvalues. 

2.3 Parametric Eigenspace: Appearance 
Representation 

The appearance representation of object p is 
constructed in universal eigenspace as follows. 
Each learning sample - (p) in the image set of p l~'r, 1 
is projected to the eigenspace by first subtracting 
the average image e from it and finding the dot 
product of the result with each of the eigenvec- 
tots (dimensions) of the universal eigenspace: 

g~V) _ , r , _ ( v ) - c )  (10) ,l = [el,ex,... ,~kj kAr, l 

Once again, the subscript r represents rotation 
and l the illumination direction. By projecting 
all learning samples in this manner, we obtain a 
set of discrete points in universal eigenspace. 
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Since consecutive images are strongly corre- 
lated, their projections in eigenspace are close 
to one another. The exact reasons for this 
proximity are given in the following section. 
This is in contrast to the geometrical "aspects" 
(Koenderink and van Doom 1979) of an ob- 
ject that change instantaneously with viewing 
direction at accidental views, causing a visual 
event. Such aspect changes are caused by the 
sudden appearance of previously occluded ob- 
ject features such as faces. In our appearance 
representation, changes in object aspect seldom 
cause drastic changes in correlation. On the 
other hand, such changes may be expected when 
the object is either highly specular or has high- 
frequency texture. In such cases, an incremental 
pose or illumination variation can cause dramatic 
changes in image brightness. In the absence of 
such effects, however, the discrete points g(P) de- r,l  
scribe a smoothly varying manifold in eigenspace: 

g(P) (01 ,02 , . . .  , Om) ( 1 t )  

where, 01,02,..., 0,,~ are continuous pose and il- 
lumination parameters. The above manifold is 
referred to as the pararnetric eigenspace repre- 
sentation; it is a compact representation of the 
appearance of object p. In practice, the number 
of parameters used for pose and illumination can 
vary. Therefore, depending on the application, 
the appearance representation may be a curve, 
surface, or volume in k-dimensional space; we 
shall refer to this geometrical "variety" as simply 
a manifold. As stated earlier, in our experi- 
ments we rotate the object about a single axis. 
Further, for ease of implementation, illumina- 
tion direction is confined to a single plane in 
three-dimensional space. Thus, the appearance 
representation is a bivariate manifold: 

g(V)(01, 02) (12) 

In the present implementation, we have used 
a standard cubic-spline interpolation algorithm 
(Press et al. 1988) to compute the above man- 

ifold from the points g(P) If the manifolds of 
r , l  " 

two objects intersect in universal eigenspace, the 
intersection corresponds to poses of the two ob- 
jects for which their images are very similar in 
appearance. Such images are inherently am- 

Fig. 4. Parametric eigenspace representation computed using 
the image set shown in Figure 2. Only the three most 
prominent dimensions of the eigenspace are displayed here. 
The dots correspond to projections of learning samples. 
Since illumination is constant in this case, appearance is 
given by a curve with a single parameter (rotation) rather 
than a surface. 

biguous; they simply do not contain sufficient 
information for unique object identification. 

Using the above procedure, a manifold is also 
constructed in the object's eigenspace. Learning 
samples are projected onto this space to obtain 
the discrete points: 

f~(p) t-(v) -(v) (s,)lT/ (v) _ c(V)) (13) ,l = tel ' e2 ' '" ' ' % j ~,Xr,/ 

where, e(V) is the average of all images in the 
object image set. Using cubic splines, the points 

,z are interpolated to obtain the manifold: 

f(P)(01,02) (14) 

This continuous manifold enables us to find poses 
of the object that are not included in the learning 
samples. It also enables us to compute accurate 
pose estimates under illumination directions that 
lie in between the discrete ones used in the 
learning stage. 

Figure 4 shows the eigenspace representation 
of the object in Figure 1. This eigenspace was 
computed using the image set in Figure 2. The 
figure shows only three of the most significant 
eigenvectors since it is difficult to display and vi- 
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sualize higher-dimensional spaces. The appear- 
ance representation in this case is a curve rather 
than a surface since illumination is constant for 
the image set in Figure 2. The dots on the curve 
correspond to projections of individual images in 
the learning set. The continuous curve passing 
through the discrete points is parametrized by 
rotation, 01. A closed curve is obtained since 
the object is rotated a full 360 degrees with 
increments of 4 degrees. 

It is interesting to compare the memory re- 
quired to store the object image set and that 
required for the manifold representation. Con- 
sider, learning images obtained for 100 discrete 
rotations and 100 discrete illumination direc- 
tions. This gives us an object image set with 
10,000 images where each image includes, say, 
128 x 128 pixels. In contrast, the manifold is de- 
scribed by 10,000 discrete points in an eigenspace 
that has, say, 10 dimensions. In this case, the 
manifold representation yields a 1,600:1 com- 
pression ratio. Of course, the 10 eigenvectors 
corresponding to the largest eigenvalues also 
need to be stored as they represent the dimen- 
sions of the eigenspace. Each eigenvector how- 
ever is only the size of an image. 

2.4 Correlation and Distance in Eigenspace 

Before we proceed to describe recognition and 
pose estimation, it is worthwhile to discuss some 
relevant properties of the eigenspace represen- 
tation. We show in this section that the distance 
between two points in eigenspace is a measure 
of correlation between the corresponding bright- 
ness images. Consider two images xm and x, 
that belong to the image set used to compute 
an eigenspace. Let the points g,~ and g, be 
projections of the two images in eigenspace. It 
is well-known in pattern recognition theory (Oja 
1983) that each of the images can be expressed 
in terms of its projection: 

N 

Xm = ~-~gm~ei + c (15) 
i = 1  

where e is once again the average of the en- 
tire image set. The above expression states that 
the image xm can be exactly represented as a 
weighted sum of all N eigenvectors of the ira- 

age set. The individual coefficients g~ are the 
coordinates of the point gin. Note that our 
eigenspaces are composed of only k eigenvec- 
tors. Since these eigenvectors correspond to the 
largest eigenvalues, they represent the most sig- 
nificant variations within the image set. Hence, 
xm can be approximated by the first k terms in 
the above summation: 

k 

xm ~ Z 9~,ei + c (16) 
i=1  

As a result of the brightness normalization 
described in section 2.1, xm and xn are unit 
vectors. The similarity between the two images 
can be determined by finding the sum-of-squared- 
difference (SSD) between brightness values in the 
images. This measure is extensively used in ma- 
chine vision for template matching, establishing 
correspondence in binocular stereo, and feature 
tracking in motion estimation. It is known that 
SSD can be related to correlation as: 

Ilxm - x,~il 2 = (x~ - x,~)3:(x,, - x~) (17) 

= 2 - 2xTxn 

where, xT, xn is the correlation. Maximizing 
correlation, therefore, corresponds to minimizing 
SSD and thus maximizing similarity between the 
images. Alternatively, the SSD can be expressed 
in terms of the eigenspace points g,~ and g, using 
(16): 

llx,~ - x~tl 2 ~ Z g m ,  e~ -  Zg,~,ei  (18) 
i=1  i = 1  

The right hand side of the above expression can 
be simplified to obtain: 

i=1  i = 1  

k k 

= Z Y; e ej 
i=1  j = l  

× (9,~ - 9~,)2 

= Ilg~,,- gnH 2 (19) 

The last simplification results from the eigenvec- 
tors being orthogonal; eTej = 1 when i = j ,  and 



Visual Learning and Recognition of 3-D Objects from Appearance 13 

0 otherwise. From (18) and (19), we get: 

Ilxo, - xnll 2 ~ IIgTr, - g~ll 2 ( 2 0 )  

The above relation implies that the square of 
the Euclidean distance between points gm and 
g,~ is an approximation of the SSD between im- 
ages xm and x~ . In other words, the closer the 
projections are in eigenspace, the more highly 
correlated are the images. This property of the 
eigenspace makes it appealing from the perspec- 
tive of machine vision, where, correlation is very 
often used as a measure of similarity between 
images. 

3 Object Recognition and Pose Estimation 

A brute force approach to appearance-based 
recognition is to compare an unknown input 
image with all images (corresponding to dif- 
ferent poses and illumination directions) of all 
objects of interest to the recognition system. 
Such an approach is equivalent to exhaustive 
template matching. Clearly, this is impracti- 
cal from a computational perspective given the 
large number of images involved. The para- 
metric eigenspace representation enables us to 
accomplish essentially the same task but in a very 
efficient manner. Since the eigenspace is opti- 
mal for computing correlation between images, 
we can project an input image to eigenspace and 
simply look for the closest manifold (object). 

Consider an image of a scene that includes 
one or more of the objects we have learned. 
We assume that the objects are not occluded 
by other objects in the scene when viewed from 
the sensor direction, and that the image regions 
corresponding to objects have been segmented 
away from the scene image. Each segmented 
image region is normalized in scale and bright- 
ness as described in section 2.1. This ensures 
that (a) the input image is of the same size as 
the eigenvectors (dimensions) of the universal 
and object eigenspaces; (b) the recognition sys- 
tem is invariant to fluctuations in the intensity 
of illumination; and (c) the recognition system 
is invariant to magnification, i.e. the distance of 
objects from the sensor. Since the current imple- 
mentation assumes that the viewing direction is 

fixed, invariance to object magnification is valid 
only when image projection can be approximated 
by the weak-perspective model, i.e. scaling fol- 
lowed by orthographic projection (Huttenlocher 
and Ullman 1990). 

Since the universal eigenspace is tuned to dis- 
criminate between different objects, the input 
image y is first projected to this space: 

z = [ e l ,  e 2 , . . . ,  e~ ]a ' (y  - c )  ( 2 1 )  

The recognition problem then is to find the ob- 
ject p whose manifold z ties on. Due to factors 
such as image noise, aberrations in the imaging 
system, and digitization effects, z may not lie ex- 
actly on an object manifold. Therefore, we find 
the object p that gives the minimum distance d~ ~) 
between its manifold g(P)(Ol,02) and z: 

d~ p) = minllz - g(')(01, 02)1[ (22) 
01,02 

If d~ ~) is within some pre-determined threshold 
value, we conclude that the input image is of 
object p. If not, the input image is not of any 
of the objects learned by the system. It is im- 
portant to note that the manifold representation 
results in more reliable recognition than using 

,(v) in eigenspace. just the cluster of the points sr.l 
Manifolds of different objects can intersect each 
other or even be intertwined, in which cases, us- 
ing nearest cluster algorithms could easily lead 
to incorrect recognition results. 

Once the object p in the input image y is rec- 
ognized, y is projected to the object's eigenspace. 
This space is tuned to variations in the appear- 
ance of a single object and hence is most appro- 
priate for pose estimation. Mapping the input 
image to this space gives the point z (p). The 
pose estimation problem may be stated as fol- 
lows: Find the rotation parameter 01 and the 
illumination parameter Oz that minimize the dis- 
tance d(1 p) between z(p) and the manifold f(P): 

d~ p) = minllz - f(P)(0,, 0z)ll (23) 
01,02 

The 01 value obtained is the pose of the object 
in the input image. Figure 5(a) shows an input 
image of the object whose parametric eigenspace 
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(a) 

(b) 

Fig. 5. (a) An input image. (b) The image is mapped to a point in object eigenspace. The location of the point on the 
parametric curve determines the pose of the object in the image. 

was shown in Figure 4. The pose of the object in 
this image lies in between two consecutive poses 
used in the learning stage. In Figure 5(b), the 
input image is mapped to the object eigenspace 
and is seen to lie close to the parametric curve 
of the object. 

Mapping an input image to universal and ob- 
ject eigenspaces is computationalty simple. As 
mentioned earlier, the eigenspaces are typically 
less than 20 in dimensions. The projection of an 
input image to a 20-dimensional space requires 
20 dot products of the input image with the or- 
thogonal eigenvectors that constitute the space. 
This procedure can easily be done in real-time 
(frame rate of a typical image digitizer) using 
simple and inexpensive hardware. 

Once the image has been projected to an 
eigenspace, we need to find the manifold point 
that is closest to it. One approach is to use 
an exhaustive search algorithm that computes 
the distance of the input point from a large 
number of points uniformly sampled from the 
parametrized manifolds. This is clearly ineffi- 
cient both in memory and time; all the sampled 
manifold points need to be stored, and the Eu- 
clidean distance of the input point with respect 
to each manifold point must be computed. The 

computational complexity is O(kn) where n is 
the number of manifold points and k is the di- 
mensionality of the eigenspace. 

We have implemented two alternative schemes. 
The first is an efficient technique for binary 
search in multiple dimensions (Nene and Nayar 
1994). This algorithm uses a carefully designed 
data structure to facilitate quick search through 
the multi-dimensional eigenspace in O(k log 2 n). 
This approach is particularly effective when the 
number of manifold points is relatively small. 
The second approach (Mukherjee and Nayar 
1990) uses three-layered radial basis function 
(RBF) networks proposed by Poggio and Girosi 
(Poggio and Girosi 1991) to learn the mapping 
between input points and manifold parameters 
(object number and pose). The complexity of 
this method depends on the number of networks 
used and their sizes, and is in practice compara- 
ble to that of the binary search approach. Such a 
network implicitly interpolates, or reconstructs, 
manifolds from the discrete eigenspace points 
gO,) and f(P) and therefore does not require r,l Ar, l 
the use of cubic spline interpolation followed 
by the resampling of manifolds. This advantage 
however comes with a slight sacrifice in pose 
estimation accuracy. 
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(a) Object Set 1 

(b) Object Set 2 

Fig. 6. Two object sets used in the learning and recognition 
experiments. (a) Set 1 includes four objects with uniform 
reflectance but similar shapes. (b) Set 2 includes objects 
with complex reflectance and geometric properties. 

4 Experiments 

The setup used to conduct experiments was de- 
scribed in section 2.1. The object is placed on 
a computer-controlled turntable (see Figure 1) 
and its pose is varied about a single axis, namely, 
the axis of rotation of the turntable. We assume 

that the object is illuminated by the ambient 
lighting of the environment that is not expected 
to change between the learning and recognition 
stages. This ambient illumination is of relatively 
low intensity. The main source of brightness is 
an additional light source whose direction can 
vary. Illumination is varied using a 6 degree-of- 
freedom robot manipulator (see Figure 1) with 
a light source mounted on its end-effector. Im- 
ages of the object are sensed using a 512 x 480 
pixet CCD camera and are digitized using an 
Analogics frame-grabber board. This setup en- 
ables us to automatically acquire image sets. 
Since hundreds of images are obtained for each 
object, a substantial amount of storage memory 
is required. Note that an eigenspace can be 
computed only after the complete image set is 
obtained. We have used a 1.6 Gbyte hard disk 
to store the image sets. These images of course 
can be discarded once the objects have been 
learned, i.e. after the low-dimensional paramet- 
ric manifolds are constructed. 

Experiments were conducted on two sets 
of objects that are shown in Figure 6(a) and 
Figure 6(b). Set 1 includes objects with uniform 
reflectance but shapes that appear very similar 
for certain poses. We will see that for such 
poses, subtle differences in shading and occlud- 
ing contours are sufficient for the recognition 
system to correctly identify the objects. Set 2 
includes objects with complex appearance char- 
acteristics. These are good examples of objects 
whose shape and reflectance properties are very 
difficult to model with any reasonable precision. 
In addition, their images include strong specular 
reflections as well as complex interreflections, 
physical processes that are known to be difficult 
to analyze. Again, we will see that appearance- 
based recognition does remarkably well in iden- 
tifying and estimating the poses of such complex 
objects. Table 1 summarizes the poses and light 
source directions used to acquire object image 
sets. For each object, we have used 5 different 
light source directions, and 90 poses for each 
source direction. This gives us a total of 1800 
images in the universal image set and 450 im- 
ages in each object image set. Each of these 
images is automatically normalized in scale and 
brightness. Each normalized image is 128 x 128 
pixels in size. 
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Table 1, Image sets for each of the two object sets shown 
in Figure 6. The 1080 test images used for recognition are 
different from the 1800 images used for learning. 

Learning Samples Test Samples for Recognition 

4 Objects 4 Objects 
5 Light Source Directions 3 Light Source Directions 
90 Poses 90 Poses 

1800 Images 1080 Images 

4.1 Appearance Representation 

The STA algorithm (Murase and Lindenbaum 
1992) was used to compute 10 eigenvectors cor- 
responding to the 10 largest eigenvalues for each 
of the above universal and object sets. The al- 
gorithm is implemented and executed on a Sun 
SPARC 2 workstation. Once the eigenspaces 
are computed, individual images are projected 
onto the universal and object eigenspaces. This 
process is efficient since it only requires the dot 
product of each learning sample with the 10 
dimensions of the eigenspaces. The spline inter- 
polation algorithm outlined in (Press et al. 1988) 
was used to construct parametric manifolds from 
the discrete points. 

Figure 7 shows parametric manifolds com- 
puted for  all objects in Figure 6. Once 
again, the manifolds are displayed as sur- 
faces in three-dimensional eigenspaces. Since 
three dimensions are not sufficient to illustrate 
the object discriminating power of the uni- 
versal eigenspace, we have shown only object 
eigenspaces. The parameters of the surfaces are 
pose (0a) and illumination direction (02). The 
surfaces are narrow since we have used only 5 
light source positions in the learning stage. 

4.2 Recognition and Pose Estimation Results 

These experiments were conducted indepen- 
dently for object sets 1 and 2. For each set, 
a total of 1080 test images were used. These 
images are detailed in Table 1 and were taken 
at object poses that lie in between the ones used 
to obtain the learning samples. Each test image 
is first normalized in scale and brightness and 
then projected to universal eigenspace. The bi- 
nary search algorithm (Nene and Nayar 1994) 
is used to search for the closest manifold point, 

this process takes approximately 60 msec on a 
Sun SPARC workstation. 

We define recognition rate as the percentage 
of test images for which the object in the im- 
age is correctly recognized. Figures 8(a) and (b) 
summarize the recognition results for set 1. Fig- 
ure 8(a) illustrates the sensitivity of recognition 
rate to the number of eigenspace dimensions. 
Clearly, the  discriminating power of the univer- 
sal space is expected to increase with the number 
of dimensions. The recognition rate is found to 
be poor if less than 4 dimensions are used but ap- 
proaches unity as the dimensionality approaches 
10. 

Figure 8(b) shows the relationship between 
recognition rate and the number of object poses 
used for learning. If the pose increments used 
in the learning stage are small, we obtain a 
larger number of learning samples and hence a 
larger number of discrete points on the para- 
metric manifold. Since the manifold is obtained 
by interpolating these discrete points, the ac- 
curacy of the manifold representation increases 
with the number of learning poses used. For 
the four objects in set 1, 30 poses of each object 
(12 degree increments of the turntable position) 
are sufficient to obtain recognition rates close to 
unity. If a lesser number of learning poses are 
used, recognition tends to be unreliable when 
the test images correspond to poses that lie in 
between the learning poses. 

The 1080 test images of the 4 objects in set 1 
were also used to determine the accuracy of pose 
estimation using object eigenspaces. Since these 
images were taken using the controlled turntable, 
the actual pose in each image is known. Figures. 
8(c) and (d) show histograms of pose errors (in 
degrees) computed for the 1080 test images. In 
Figure 8(c), 450 learning samples (90 poses and 
5 source directions) were used to compute each 
object eigenspace. In this experiment, all the 
object eigenspaces used were 8-dimensional. In 
Figure 8(d), 90 learning samples (18 poses and 5 
source directions) were used. The pose estima- 
tion results in both cases are found to be very 
accurate. In the first case, the average absolute 
pose error computed using all 1080 images is 
0.5 degrees, while in the second case the av- 
erage error is 1.0 degrees. Similar recognition 
and pose estimation experiments were conducted 
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Fig. 7. Appearance manifolds in object eigenspace for the objects in (a) set 1; and (b) set 2. For display, only the three 
most important dimensions of each eigenspace are shown. The manifolds are reduced to surfaces in three-dimensional space. 

using object set 2. In this case, the average ab- 
solute pose error is 0.5 degrees when 90 learning 
poses are used, and 1.2 degrees when 18 poses 
are used. The sensitivity of recognition to im- 
age noise and segmentation error is analyzed in 
(Murase and Nayar 1994). 

4.3 An Example Application 

Figure 9 shows recognition and pose estimation 
results for an image sequence of a moving car. 

Four of the 30 frames obtained are shown in 
Figure 9(a). A simple segmentation algorithm 
was implemented to extract the moving object 
from the background. This segmentation algo- 
rithm estimates the moving image region (white 
box) by subtracting an image of just the sta- 
tionary background from each images in the 
sequence. The moving image region is nor- 
malized with respect to scale and brightness and 
then projected to universal eigenspace. The car 
model is identified and its pose computed using 
the manifolds shown in Figure 7(b). Figure 9(b) 
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Fig. 8. Recognition and pose estimation results for object set 1. (a) Recognition rate plotted as a function of the number of 
universal eigenspace dimensions used. (b) Recognition rate plotted as a function of the number of discrete poses of each 
object used in the learning stage. In both cases recognition rates were computed using all 1080 test images detailed in Table 
1, Histogram of error in computed object pose when (c) 90 poses are used for learning; and (d) 18 poses used for learning. 
The average absolute pose error is 0.5 degrees in the first case and 1.0 degrees in the second case. 

shows the learning samples with poses closest to 
the computed poses. 

4.4 A u t o m a t e d  Recognit ion System 

Based on the above results, we implemented 
a recognition system with 20 objects in its 
database (see Figure 10). These objects vary 
from smoothly curved shapes with uniform re- 
flectance, to fairly complex shapes with intricate 
textures and specularities. Developing CAD 
models of such objects could prove extremely 
cumbersome and time-consuming. Both learn- 
ing and recognition are done in a laboratory en- 
vironment where illumination remains more or 
less unchanged. As a result, appearance mani- 
folds are reduced to curves parametrized by just 
object pose. Each object image set includes 72 
learning images (5 degree increments in pose), 
resulting in a universal set of 1440 images. The 

object appearance curves were constructed in 
a 20-dimensional universal eigenspace. In this 
case, both recognition and pose estimation are 
done in universal space, i.e. separate object 
eigenspaces were not computed. The entire 
learning process, including, image acquisition, 
computation of eigenvectors, and construction 
of appearance curves was completed in less than 
12 hours using a Sun SPARC workstation. 

The recognition system automatically detects 
significant changes in the scene, waits for the 
scene to stabilize, and then digitizes an im- 
age. In the present implementation, objects are 
presented to the system one at a time and a 
dark background is used to alleviate object seg- 
mentation. The complete recognition process, 
including, segmentation, scale and brightness 
normalization, image projection in universal 
eigenspace, and search for the closest object 
and pose is accomplished in less than 1 second 
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(a) Automatic segmentation of the moving object. 

(b) Learning sample with closest pose. 

Fig. 9. Appearance-based recognition and pose estimation applied to the image sequence of a moving car. 

on the Sun workstation. The robustness of this 
system was tested using 320 test images of the 
20 objects taken at randomly selected but known 
poses of the objects. All test images were cor- 
rectly identified by the system. A histogram of 
the absolute pose error is shown in Figure 10(c); 
the average and standard deviation of the abso- 
lute pose error were found to be 1.59 degrees 
and 1.53 degrees, respectively. 

5 Discuss ion  

In this section, we briefly discuss several issues 
related to the proposed learning and recognition 
technique. Some of these may be viewed as 
merits while others as limitations leading to open 
research problems for the future. 

• Appearance Based Approach: Both learning 
as welt as recognition are done using just 
two-dimensional brightness images. This is in 
strong contrast to traditional recognition algo- 
rithms that require the extraction of geometric 
features such as edges, lines, or geometric in- 
variants. Such features are often difficult to 
compute with robustness, and reliable algo- 
rithms for extracting them from images are 
still being actively researched. Our approach 
of using raw image data directly for learn- 

ing and recognition, without any significant 
low-level or mid-level processing, is a major 
advantage of the proposed approach. Inter- 
esting research directions include the use of 
processed, or filtered, input images, and the 
integration of the present appearance based 
approach with previously developed geometry 
based recognition techniques. 

• Shape and Reflectance: An appealing feature 
of the proposed approach is that it does not 
require any knowledge of the shape and re- 
flectance properties of objects. By varying 
object pose and illumination, we capture the 
combined effect of both intrinsic properties of 
an object. In addition, the appearance for any 
given pose and illumination may include specu- 
lar highlights and complex interreflections be- 
tween points on the object surface. All of 
these phenomena together produce the over- 
all appearance of the object. Since we are 
representing object appearance, none of the 
above phenomena need be modeled or ana- 
lyzed. 

• Segmentat ion and OccLusion: Learning and 
recognition require the segmentation of object 
regions. In structured environments, the back- 
ground can be controlled, in which case, simple 
thresholding is sutficient for robust segmenta- 
tion. In the case of moving objects, simple 
background subtraction algorithms such as the 
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(a) Object set 

Fig. 10. An automated recognition system with 20 objects in the database. A complete recognition cycle takes less than 1 
second on a Sun SPARC workstation. 

one used for the moving car sequence (Fig- 
ure 9) can be effective for segmentation. In 
the context of general scenes, however, seg- 
mentation poses a serious problem and can be 
viewed as a limitation of the proposed method. 
The method also requires that the objects not 
be occluded. Since the technique is based 
on direct appearance matching, it simply can- 
not handle substantial degrees of occlusions. 
This is a second limitation of the parametric 
eigenspace approach. Segmentation and oc- 
clusion therefore present challenging research 

directions for appearance based recognition. 
Dimensionality of the Eigenspace: The num- 
ber of eigenspace dimensions needed for rep- 
resentation depends on the appearance char- 
acteristics of the objects as well as the number 
of objects of interest to the recognition system. 
If the objects have complex textures, a larger 
number of dimensions would be needed for ac- 
curate representation. Further, as the number 
of objects increases, a larger number of dimen- 
sions may be needed for robust recognition. 
The exact number of dimensions required for 
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any given set of objects is difficult to quan- 
tify since there are no simple relationships 
between an object's intrinsic properties and 
its eigenspace representation. Such relation- 
ships need to be explored before eigenspace 
representations can be optimized with respect 
to storage space. 

• Parameters of the Manifold: In our exper- 
iments, we have used only two parameters 
for object representation, one for object rota- 
tion and the other for illumination direction. 
A single rotation parameter is sufficient for 
objects that have a finite number of stable 
configurations. In general, however, three pa- 
rameters are needed to describe the pose of 
an object in three dimensions. An additional 
two parameters would be required for vary- 
ing illumination in three dimensions; only two 
parameters are sufficient since rotations about 
the source direction need not be considered. 
From a practical perspective, the number of 
parameters would be too many if arbitrary 
rotations and illumination directions are con- 
sidered. In general, manifolds with up to 
three parameters can be used without much 
of a problem. These three parameters can be 
selected depending on the application at hand. 

• Computations for Learning: In our present 
implementation, we use the universal eigen- 
space for object identification. The space is 
computed using image sets of all objects. If 
a new object is to be learned by the recogni- 
tion system, the universal eigenspace must be 
recomputed with a universal image set that in- 
cludes the image set of the new object. Since 
the universal eigenspace is time consuming to 
compute, we would like to avoid recomputing 
it when new objects need to be learned. One 
approach is to project the new object's learning 
samples to the previously computed universal 
eigenspace. Though the resulting manifold is 
only an approximation, it would generally be 
sufficient for object identification. A more 
reliable approach is to compute a modified 
universal space by orthogonalizing the previ- 
ous universal space and the new object's own 
eigenspace. One practical method, among sev- 
eral others, to achieve this is Gram-Schmidt 
orthogonalization (Householder 1964). 

• Computations for Recognition: Though the 

learning process poses large memory require- 
ments and is computationally intensive, it is 
done off-line. The time taken to learn an 
object is generally not as crucial as the time 
needed to recognize it. In contrast to learning, 
recognition and pose estimation are simple and 
computationally very efficient, requiring only 
the projection of the input image to univer- 
sal and object eigenspaces and search for the 
closest manifold points. Recognition and pose 
estimation can therefore be accomplished in 
real-time (frame-rate of 30 Hz) using simple 
and inexpensive hardware. In contrast, most 
model-based recognition algorithms are too 
slow for practical applications. 
Applications: We have presented appearance 
based learning and recognition as a general 
approach for visual perception. However, 
the parametric eigenspace representation can 
be used to solve a variety of specific vi- 
sion problems, such as, illumination planning 
(Murase and Nayar 1994), visual positioning 
and tracking of robot manipulators (Nayar et 
al. 1994), and visual inspection. In many 
of these applications, factors such as segmen- 
tation and occlusion are not problems, and 
high-dimensional manifold representations are 
not required. For such applications, the ap- 
pearance representation presented here offers 
powerful and efficient solutions. 

6 Conclusion 

We presented a new representation for machine 
vision called the parametric eigenspace. While 
representations previously used in computer vi- 
sion are based on object geometry, the proposed 
one describes object appearance. We proposed 
a method for automatically learning an object's 
parametric eigenspace. Such learning techniques 
are fundamental to the advancement of visual 
perception. We developed efficient object recog- 
nition and pose estimation algorithms that are 
based on the parametric eigenspace representa- 
tion. The learning and recognition algorithms 
were tested on objects with complex shape and 
reflectance properties. A statistical analysis of 
the errors in recognition and pose estimation 
demonstrate the proposed approach to be very 
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robust to factors such as image noise and quan- 
tization. These results suggest the feasibility of 
a real-time appearance based recognition system 
with a very large object database. 

A Computing Eigenvectors of Large Image Sets 

Let X be an N x M image matrix, where M is 
the total number of images and N the number 
of pixels in each image. We are interested in 
finding the eigenvectors of the covariance matrix 
Q = XX T, an N x N matrix. The calculation of 
the eigenvectors of such a large matrix is compu- 
tationally intensive. Fast algorithms for solving 
this problem have been a topic of active research 
in the area of image coding and compression. 
Here, we briefly describe three algorithms. We 
refer to these as the conjugate gradient, singular 
value decomposition, and spatial temporal adap- 
tive algorithms. Each algorithm may be viewed 
as a modification of the previous ones. The 
first two of these are described in detail in (Oja 
1983). 

Conjugate Gradient 

A practical approach to computing the eigenvec- 
tors of large matrices is to use iterative meth- 
ods. A reasonably efficient iterative scheme that 
suggests itself is the conjugate gradient method. 
There are several variations to the conjugate gra- 
dient approach (Yang et al. 1989). The problem 
is formulated as one of finding the eigenvalues 
and eigenvectors that maximize a scalar function. 
A function that is often used is the Raleigh quo- 
tient F(e): 

F ( e ) -  (eTQe)'~ (24) 
(eTe 

Conjugate gradient is used to find the vector el 
that maximizes F. The corresponding value of 
the Raleigh quotient, F(el), is the largest eigen- 
value ),1 of the covariance matrix Q. Once the 
largest eigenvalue and the corresponding eigen- 
vector are computed in this manner, Q is modi- 
fied to remove the dimension associated with the 
computed eigenvector. The Raleigh quotient is 
then used with the modified covariance matrix to 
determine the next largest eigenvalue and corre- 
sponding eigenvector. The iterative modification 

of Q can be summarized as: 

Q1 = Q  
Q~ = Qs-1 T (25) -- As_les_les_ 1 

The above procedure can be repeated until a 
desired number of eigenvectors of Q are com- 
puted. Since in our case Q is a very large matrix 
(N x N), each iteration of the conjugate gradient 
algorithm can prove expensive. 

Singular Value Decomposition 

If the number of images M is much smaller 
than the number of pixels N in each image, a 
much more efficient algorithm may be used. This 
algorithm, developed by Murakami and Kumar 
(Murakami and Kumar 1982), uses the implicit 
covariance matrix Q, where: 

= x T x  (26)  

Note that Q is an M x M matrix and therefore 
much smaller than Q when the number of im- 
ages in X is smaller than the number of pixels 
in each image. Using the conjugate gradient 
algorithm described above, the M eigenvectors 
of Q can be computed. These can be computed 
much faster than the first M eigenvectors of 
Q due to the disparity in the sizes of the two 
matrices. Using singular value decomposition 
(SVD), Murakami and Kumar (Murakami and 
Kumar 1982) show that the M largest eigen- 
values and the corresponding eigenvectors of Q 
can be determined from the M eigenvalues and 
eigenvectors of Q as: 

l 
ei = ~ -  ~ X'gi (27) 

Here, 3,~ and ei are the i th eigenvalue and eigen- 
vector of Q, while ~ and "gi are the i th eigenvalue 
and eigenvector of Q. Since we are only inter- 
ested in the first k eigenvectors of Q, where 
k < M, the SVD algorithm can be used. It is 
not useful, however, when more than M eigen- 
vectors are needed. 
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Spatial Temporal Adaptive 

Murase and Lindenbaum (Murase and Linden- 
baum 1992) have recently developed the spatial 
temporal adaptive (STA) algorithm that takes 
the above SVD algorithm one step further to 
achieve substantial improvements in computa- 
tional efficiency. They observe that the com- 
putation of Q from the image matrix X is itself 
expensive. Therefore, each image in X is divided 
into "blocks" and image data in each block is 
compressed using the discrete cosine transform 
(DCT) (Chert et al. 1977). Due to spatial cor- 
relation within an image, each image block is 
typically represented by a small number of DCT 
coefficients. Further, blocks at the same location 
in consecutive images are often highly correlated 
and have the same DCT coefficients. A set of 
such blocks are referred to as a "superblock" 
and is represented by the DCT coefficients of a 
single block. In this manner, the image matrix 
X is compressed to obtain a small number of 
DCT coefficients. Individual elements of Q can 
then be computed from the DCT coefficients of 
the blocks and superblocks of X. This procedure 
of computing Q saves substantial computations. 
Next, the conjugate gradient algorithm is used 
to compute the eigenvalues and eigenvectors of 
Q. These eigenvalues and eigenvectors are used 
to determine the eigenvectors ei and eigenvalues 
Ai of the original covariance matrix Q by apply- 
ing the SVD technique (see equation 27). This 
step also requires the use of X which is now 
compressed using DCT. Computations are once 
again saved by determining ei in DCT domain 
and then transforming it back to spatial domain 
using inverse DCT. 

Murase and Lindenbaum have compared the 
performance of the STA algorithm with the con- 
jugate gradient and SVD algorithms described 
previously. Their results show the STA algo- 
rithm to be superior in performance to both 
algorithms, often 10 or more times faster than 
the SVD algorithm. 
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