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Abstract

If a set of image data, x, are transformed under some operation, S, to
x'=Sx, then it is possible to construct a "recognition function,” f(x), which is
invariant with respect to S, provided S is an element of a Lie group, which in
principle could be multi-dimensional. Simultaneous invariance with respect to
several Lie group transformations is also possible.

We explore the prospects for practical construction of such invariant
functions and find that it is important to choose the correct image representation

basis.



1. Introduction

Given an image x , we seek a "recognition function,” f, such that
when the image changes from x = Sx, f(x ), = f(x *). That is to say we
want a function f that does not change even though the image does.
For example if the object of of which x is an image rotates or
changes size, etc., f evaluated on the new image is still the same. We
say that f is invariant with respect to x . Such an invariant function
could be used for object recognition if it had different values for
different objects.

To find a recognition function that is invariant with respect to S
we must solve

f(Sx ) = f(x) (1)

for all x of interest. This is a very difficult problem that cannot in
general be solved directly. If, however, the transformation S is an
element of a Lie group, it is possible to construct a formal solution to
Eqn. (1). This we do in Sect. 2. Detailed discussion of Lie groups can
be found in Belinfante and Korman, 1972).

The way that the image is represented is very important. The
representation must be such that the group properties of S are
preserved. For example if S is a function of some parameter, 6 , we
must have that S(-6 )(S(-6)x ) =x for any image x . Whether or not
this property is preserved depends on which representation of is x
used. The representation of x in tumn determines the representation
of S. Usually we will imagine that x isann x1 matrix (column
vector) while S is an n xn square matrix, where n is related to, but
not necessarily equal to the number of pixels in the image. The
components of x could be pixel brightnesses, but they could also be
something else.

Finally a word about notation. To be consisent with the
mathematical literature on group theory and differential geometry
and also for convenience, we let x i denote the i-th component of a
column vector, while y; denotes the i-th component of a row vector.
epeated upper an lower indeces imply summation, thus xiyi =

£ix i yi. In addition we denote d/9xiby di.
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In our approach we assume that S is an element of a one- or
many- parameter Lie group (detailed discussion of Lie groups can be
found in Belinfante and Korman, 1972). Instead of trying to solve (1)
we seek an operator T, that acts on f, such that

’

Tf(Sx ) = f(x ). (2)

T changes f in such a way as to "compensate" for the change from x
to Sx . Afterwards knowing T we will attempt to solve Tf = f.

2. Formal Solution

We assume that the image data can be represented in the form x = 1,
x2, ....), where the xi (i = 1,2,3, ....) are "coordinates” that could represent
the pixel brightnesses in the scene or which could be the coefficients in some
kind of "expansion™ such as that described by (Roseborough and Murase,
1990). For simplicity, we take f(x) to be a real scalar function. Let S(8) be a
transformation characterized by the parameter set 6 = (6!, 62, 63, ..). S can be
any operation such as translation, rotation, or dilation that forms a Lie group.
An infinitesimal transformation is given by

S(de) =1 +dei G, | 3)

where the G;are the group generators and d@i are infinitesimal. Throughout
this paper, unless otherwise specified, we sum on upper and lower repeated
indeces in accord with the Einstein summation convention. A group generator

is defined as

Gj=tim, . o (S(6)-1)e!
“4)
5 _

= s'js(e),e =0 °

where S(0) = 1 by definition. Applying an infinitesimal transformation, S(de),
. 10 X, we obtain

S(d8)x=x+deoiG;x. (5



Now making the substitutions x — S(d6)"lx and S — S(d8) in (2),
where S(8)°! denotes the inverse of S(8), we find

Tf(x) = £(S(d8)1x). (6)
For Lie groups S(d6)'! = §(-d8) =1 - do' G;, thus S(d8)' x =x - dei G, x .

Substituting into (6) and expanding in a Taylor series up to the first order in
de, we obtain

Ti(x) = £(x) - 401 (G; 2 3,f(x) (7)

where (G; x)’ denotes the j-th component of (G;x), and ajf(x) denotes the
partial derivative of f with respect to xJ. T thus depends on © and its
infinitesimal form, T(d®), is given by

T(d0) = 1 - doi (G; x)' J;. (8)
The generators of T, H;, are thus
Hi= - (GiX)J aj. (9)

From the theory of Lie groups, a finite Lie group transformation can be
expressed in terms of its generators by

o' H; (10)

TO)=¢€¢"
See (Lenz, 1990) or (Kanatani, 1990) for more details of this derivation.

Defining f’(x, 6) = T() f(x) and expanding (10) we obtain



£*(x, 8) = T(®) fx) =€ ° (G;x) 9 £(x)
(11)

= 1x) - 01 (G; x 3, f(x)
+ (1)) 0161 (G; ) 3,((Gy )" B £(0)) + .

£*(x, 0) satisfies (1) in the sense that £'(x, 8) = £*(S(6)-1x, 0). Although

f is arbitrary, in order to actually construct 'y (x, @), its derivatives must be
sufficiently "well behaved” that the series in (11) converges. Although

f‘(x, 6) is an invariant function, it contains ©, whose value is usually not
accessible from raw image data.

But knowing T, another approach is mow possible. We can attempt to
solve the differential equation

TO)f =1 (12)

for f. This is usually a difficult problem but it is relatively easy to find a class
of "first order” solutions, as we shall later see. o

3. Constructing an Invariant Image Function

We now discuss how to actually construct f* (x, 8) with respect to some
transformation. For simplicity, we take S(0) to be a one parameter Lic group.
Making the replacements G; = G and 6l — @, (11) becomes

£'(x,8) = £z) -8 (G x)' 9; x) + (Vz)) 82 (G ) (G 0)' 3 £(x))

_ (13)
-(113) 03 (G 0 3, ((c xy 9,((G x)! 9; £(x))) + .

Calculating the derivatives, we obtain



£*(x,8) = f(x)- 8 (Gx)' 3, £(x) (14) -
+(12)) 82 {(G2)'(G ) 3 3;1(x) + (G?)' 3; f(x))
-(U31) 83 {(G2)'(Gx) (G0 3y ?; 3; fx)
+2(G2x)' G, ;1) + (G*x)' 3, ()

+ sesw .
Now if we choose f = f(1), where f(1) satisfies

(Gx)' 3,1 =0, (15)

the second term on the right in (14) vanishes along with parts of the higher

order terms. By postulating a form for f(1), a class of "first order” solutions to

(12) can be determined. Such solutions may be useful in practical problems.
Now, to proceed further, we must determine the group generator, G.

4. Lie Group Generators for Image Data

Let us represent x as an » X 1 column vector, and let { ¢; } (i=12, ..,
n) be any complete set of orthonormal basis vectors that could be used to
represent the image data, such as the Walsh patterns. Expanding x in the
form x = X; xi ¢c; , a rcpresentation for G in terms of an n X n square
matrix in terms of the {¢;) can be found. Rearranging (5), making the
substitutions x —» T G; — G and multiplying on the left by eiT, we find,
using the definition of G

e;T (S(dB)e;- ¢;) = do T G ¢
(16)
= do Gl.

To determine G, we apply an infinitesimal transformation, S(de), to g and

expand S(d)e; - ¢;in the form S(de)e; - ¢; = z; (dt':j)i ¢; , where the (de;)i are
the expansion coefficients. The elements of G are thus Gij = (dcj)i/de.



Defining S(e)ej = cj(e), we can write
Gi=eT 9, (0) a7)
it de 7

where (d/de) cj(O) denotes the derivative at 8 = 0. G is thus determined in
the form of an n X n matrix. This procedure can be carried out either
"theoretically” or "empirically” using (16) or (17).

From (16), Gij= TG ¢;- Inserting a basis vector expansion of x into
(G x)i. it is easy to show that (G x)'= x Gij, where repeated upper and

lower indeces are summed as usual. T, as given in (14), can then ‘be
expressed as

£°(x,8) = £(x) - 0 11 GI, J; (x)
| (18)

+(113)) 62 {2 1 G}, Gjy 9; 9;f(x) + x (G2)}; 9; f(x)}

"The foregoing developments have been carried out without reference to
any specific set of basis vectors. To actually construct f*, however, a
"suitable™ set must be selected, and their transformation properties defined.
These choices then determine the generator representations. These choices
are not completely arbitrary. Generators of such physical operations as

translation and rotation must reflect their corresponding physical properties.
'\ Translation generators in x- and y- directions, Gx and Gy, respectively, must

obey [Gy, Gy] = O (where [a,b] = ab - ba), since translating first in the x-
direction and then 1in the y-direction should give the same result as
performing these operations in the reverse order.

In a future paper we shall discuss representations of image data that are

7% ‘suitable for the analysis outline above, but we illustrate our approach with a

simple example.



5. Discussion -

As we have seen, the construction of an invariant recognition
function, f, depends on the partial derivatives of f and on powers of
the Lie group transformation generators as can be seen in Egns. (11)
and (18). It is thus very important that the series converge. Since f
is not a fixed function, it is not too difficult to choose a well behaved
one, but the generators depend on the image representation, and
there are not so many "good" ways to represent an image.

We may wonder how humans solve the invariance problem
even when the transformations are not Lie group elements. We
speculate that "extra" cues, for example prior knowledge or "internal”
models "fill in" the missing information.

6. Summary

Our methodology is a useful way to approach the problem of
finding image invariants. The reason that it is so difficult to find an
image invariant is because many transformations of image data are
not Lie groups. Even when the transformations of the original objects
are Lie tranformations, the transformation of the image data may not
be. Futhermore even when it is, the generators may contain "large”
components that cause divergence in higher order terms in the
expansions (11) or (18). The question of what are appropriate
representations requires further research.
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