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Abstract—A power-efficient K-Means hardware architecture
that can automatically estimate the number of clusters in the
clustering process is proposed. The contributions of this work
include two main aspects. The first is the integration of the hierar-
chical data sampling in the hardware to accelerate the clustering
speed. The second is the development of the “Bayesian-Infor-
mation-Criterion (BIC) Processor” to estimate the number of
clusters of K-Means. The architecture of the “BIC Processor” is
designed based on the simplification of the BIC computations,
and the precision of the logarithm function is also analyzed.
The experiments show that the proposed architecture can be
employed in different multimedia applications, such as motion
segmentation and edge-adaptive noise reduction. Besides, the gate
count of the hardware is 51 K with the 90-nm complimentary
metal–oxide–semiconductor technology. It is also shown that this
work can achieve high efficiency compared with a GPU, and the
power consumption scales well with the number of clusters and
the number of dimensions. The power consumption ranges be-
tween 10.72 and 12.95 mW in different modes when the operating
frequency is 233 MHz.

Index Terms—Clustering methods, energy efficiency, hardware
design, K-Means, machine learning.

I. INTRODUCTION

M ULTIMEDIA processing is becoming a critical func-
tionality for mobile devices. Since many kinds of ac-

celeration methods of video coding and processing [1], [2] are
developed for embedded computing, the real-time processing
is possible for image data with different frame sizes. However,
the computational complexity of machine learning algorithms
[3], which are key techniques for semantic analysis of multi-
media contents, is still high for resource-limited systems. As a
key issue for implementation, low power consumption gener-
ally influences the design strategies. Therefore, the demands of
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low costs and energy efficiency turn the architectural design of
machine learning hardware into a challenging issue for the de-
velopment of mobile systems.

It is known that data clustering is an important part of
machine learning algorithms, and K-Means and its variations
[4], [5] are important clustering algorithms that have already
been employed in different kinds of applications. In recent
years, the development of K-Means hardware architectures
with various requirements is receiving attention [6]–[11].
Maruyama et al. propose an FPGA implementation of real-time
K-Means clustering for color images, employing a filtering
algorithm for hardware implementation [9]. Ma et al. propose a
real-time K-Means learning processor architecture, which can
be extended to multiple-chip large-scale systems [10], [11].
Besides, in our previous works [12]–[15], the importance of
hardware-oriented K-Means algorithms is emphasized, and
mainly three kinds of architectures with different functional-
ities are reported. In our first work [12], the K-Means silicon
intellectual property (SIP) that is designed for embedded sys-
tems is proposed. The architecture of the SIP is also regarded
as the prototype of the following works. In our second work
[13], the bandwidth adaptive K-Means architecture is proposed
to handle feature vectors with different dimensions, and the
processing elements are designed for the computations of both
the Euclidean distance and the Manhattan distance. In our third
work [15], the hierarchical K-Means (HK-Means) architecture
is proposed to handle large numbers of clusters, and the gate
count per cluster is the lowest among the three works. Although
the second work and the third work provide solutions to dif-
ferent problems, not much attention is paid to the hardware cost
since the previous works mainly focus on the functionality.
Moreover, the estimation of numbers of clusters [16], which
is one of the significant issues of K-Means, is not taken into
the design considerations in our previous works [12], [13], [15]
and related works [6]–[11], so the number of clusters has to be
specified before the clustering process in these architectures.

In order to deal with the problems mentioned above, an effi-
cient architecture that has low power dissipation and low area
costs is proposed. In addition to the efficient design, three new
strategies are adopted in this architecture. The first strategy is the
hierarchical data sampling, which saves the computational costs
of K-Means and speeds up the clustering process. The second
strategy is the development of the “Bayesian-Information-Cri-
terion (BIC) Processor,” which can compute the BIC score [17],
[18] and provides an option to estimate numbers of clusters. The
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third strategy is the design of the “Trial Monitor,” which en-
ables the trial computation of K-Means to achieve higher clus-
tering quality than previous works. Although the low-cost prop-
erty might come with low processing capacity compared with
our previous works [12], [13], [15], multiple trials and the es-
timation of numbers of clusters can be completed without con-
suming the bandwidth of the system bus. In addition, the pro-
posed efficient K-Means architecture can be applied to different
multimedia applications, including image segmentation, color
clustering, motion segmentation and edge-adaptive noise reduc-
tion. The low-cost specifications are capable of handling the
target applications. Furthermore, the specifications of the effi-
cient K-Means architecture are compared with the GPU archi-
tecture, and the scalability of power dissipation in the architec-
ture is analyzed with different numbers of clusters and different
numbers of dimensions.

The paper is organized as follows. First, the hierarchical sam-
pling technique that is suitable for the efficient K-Means hard-
ware is introduced in Section II. Then, the K-Means architec-
ture and the “BIC Processor” are described in Sections III and
IV, respectively. Next, the applications of the efficient K-Means
hardware and the experimental results are shown in Section V.
Finally, this paper is concluded in Section VI.

II. K-MEANS WITH HIERARCHICAL DATA SAMPLING

To design an energy-efficient K-Means hardware, it is nec-
essary to reduce the time for the clustering process. In our pre-
vious work, the hierarchical K-Means algorithm [15] is applied
to the hardware design. It is a method to generate tree structures
for centroids of clusters, so that large numbers of clusters can
be effectively handled. Different from our previous work, a hi-
erarchical sampling technique that is suitable for the proposed
K-Means hardware is introduced in this section.

Data sampling is a technique that can be applied to K-Means
clustering for speed acceleration [9], [19]. Here, an example of
using the sampling technique is explained. First, the K-Means is
performed with some samples of input vectors. Then, the cen-
troids from the results of this K-Means are used as the initial cen-
troids for the K-Means that are performed with all input vectors.
In this way, the clustering speed can be accelerated since fewer it-
erations are needed when the initialized centroids are close to the
centroids of the final clustering result. In this work, K-Means is
executed with the hierarchical sampling technique, which means
that the sampling technique is repeatedly applied to different hi-
erarchical levels. Fig. 1 illustrates this process. When the level is
3, the sample rate is , which means that one input vector is
sampled from input vectors. Similarly, when the level is 2, the
sample rate is . The hierarchical level is reduced sequen-
tially and is equal to 0 when all the input vectors are used.

The algorithm of K-Means clustering with the hierarchical
data sampling employed in this work allows the estimation of
numbers of clusters to conform to more multimedia applica-
tions. The parameters are defined as follows. and rep-
resent the starting number of clusters and the ending number of
clusters in K-Means, respectively, and the optimal number of
clusters is selected from the range of according to the
BIC score [17] [18]. The higher the BIC score, the better the

Fig. 1. Illustration of the technique of the hierarchical data sampling for
K-Means. The black dots represent the data that are used for K-Means in each
hierarchical level.

clustering results. The number of clusters of the clustering re-
sults with the highest BIC score is chosen as the optimal number
of clusters. denotes the total level of the hierarchical data
sampling, and is less than or equal to , where rep-
resents the data number of input vectors. is the total number of
trials, which is the number of times to perform K-Means with
different initial centroids. The algorithm of K-Means with the
hierarchical data sampling is stated as follows.

Step 1: Set the current level to , the current number of
trials to 1, the current number of clusters to , and
the highest BIC score to the minimum value.
Step 2: Randomly initialize the centroids of K-Means.
Step 3: Perform K-Means with input vectors by using a
sample rate of .
Step 4: If , go to Step 5. Otherwise, decrease by
1 and store the centroid vectors of the clustering results
as the initialized centroids for the K-Means of the next
hierarchical level. Go to Step 3.
Step 5: Compute the maximum likelihood for the variance
[17] according to the clustering results of K-Means and
calculate the score of the BIC.
Step 6: If the current BIC score is higher than the highest
BIC score, replace the highest BIC score with the current
BIC score and store the centroids for the representation of
the clustering result.
Step 7: If , set to 1 and go to Step 8. Otherwise,
increase by 1 and go to Step 2.
Step 8: If , the algorithm is finished, and the
cluster labels can be calculated according to the centroids
with the highest BIC score, which corresponds to the
optimal number of clusters selected from the range of

. Otherwise, increase by 1 and go to Step 2.
Fig. 2 shows an analysis of the number of iterations in

K-Means with the hierarchical sampling technique. The dark
color represents the number of iterations in the hierarchical
level, whereas the light color represents the accumulated
numbers of iterations from previous levels. The light color in
the last level (hierarchical level 0) represents the summation
of numbers indicated by the dark color from previous levels
(hierarchical level 1–10). In Fig. 2(a), it is shown that the
numbers of iterations in most hierarchical levels are lower than
the number of iterations in the initial level. This means that
the algorithm of K-Means can terminate early with the hierar-
chical data sampling. Although the total number of iterations
of all hierarchical levels, which is the accumulated number
of iterations in the last hierarchical level, is higher than 40,
the computations in each hierarchical level are not the same.
The higher the hierarchical level, the fewer input vectors are
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Fig. 2. (a) Number of iterations and the accumulated number of iterations based on the hierarchical data sampling. (b) Effective number of iterations and the
accumulated number of effective iterations based on the hierarchical data sampling. Note that the results of the analysis are obtained by color clustering. The
number of clusters in this analysis is set to� � �, the number of trials is 1, and the maximum number of iterations is set to 32.

processed. Therefore, the total effective number of iterations,
which can be used to compare with the number of iterations in
the traditional K-Means, is defined as follows:

(1)

where represents the total level of the hierarchical data sam-
pling, and represents the number of iterations in the hier-
archical level . Fig. 2(b) shows the effective number of itera-
tions accumulated in each hierarchical level, and the numbers
are presented in a logarithmic scale on the ordinate axis. It is
shown that the total number of effective iterations, which is the
accumulated number of iterations in the last hierarchical level,
is lower than 6.

Based on the definition of the effective number of iterations,
in Fig. 3(a), the relation between the number of iterations and
the number of clusters is analyzed. It is shown that the average
number of iterations (the number of effective iterations) of the
hierarchical sampling method is lower than the average number
of iterations in the traditional K-Means when the number of
clusters is adjusted from 2 to 16. It means that the hierarchical
data sampling can effectively reduce the iterations of K-Means
and save the computational time. Moreover, the relation between
the total distortion and the number of clusters is shown in
Fig. 3(b), which explains that the clustering qualities with the
hierarchical data sampling and without the hierarchical data
sampling are approximately the same. The total distortion, which
is proportional to the maximum likelihood for the variance,
is defined as follows:

(2)

where denotes the centroid that is the closest to the input
vector according to the Euclidean distance measurement, and

is the total data number. The iteration of K-Means stops if the
maximum number of iterations is reached or

, where denotes the current number of iterations, and
is a small positive constant. The lower the total distortion, the
better the clustering quality. Although the clustering process of

Fig. 3. (a) Relation between the number of iterations and the number of
clusters based on the hierarchical sampling technique. (b) Relation between
the total distortion and the number of clusters based on the hierarchical
sampling technique. Note that the results of these two analyses are the
average of 1000 times of experiments based on color clustering. The number
of trials is 1, and the maximum number of iterations is set to 32.

K-Means is accelerated by the hierarchical data sampling, the
quality does not deteriorate with the reduction of computations.

III. OVERVIEW OF HARDWARE ARCHITECTURE

The proposed efficient K-Means hardware is designed to
work on the system platform for multimedia processing that
is shown in Fig. 4, where the CPU, the external memory, and
other SIPs share the same bus resources with the K-Means
architecture [15]. Connected to the system bus, the “Data
Memory” is used to store the feature data that are extracted
for multimedia applications, and the feature data are regarded
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Fig. 4. Overview of the system environment and the efficient K-Means archi-
tecture, in which three main modules are included: the “K-Means Engine,“ the
“Trial Monitor,“ and the “BIC Processor.”

as input vectors for K-Means clustering. The “Data Memory”
can offer input vectors to the K-Means architecture with a
throughput of 1 vector/cycle for iterative vector processing, so
that the bandwidth resources of the system bus can be saved.
The size of the “Data Memory” can be determined according
to the parameters of the target application, and it functions as
a local memory for the proposed hardware. When the “Data
Memory” contains all input vectors used for the K-Means
algorithm, the clustering results can be optimized successively
without accessing the system bus.

The proposed design methodology can be implemented with
different specifications. In this work, the specifications are
defined based on the system platform with the target applica-
tions, which focus on low design costs and energy efficiency.
The maximum number of vector dimensions is set to 4, the
bit length of each dimension is set to 8, and the maximum
number of clusters is set to 4. The 4-D input vectors can be
sent to the hardware in one cycle through the 32-bit system bus.
As shown in Fig. 4, the K-Means hardware consists essentially
of three main modules. The first module, the “Bayesian-Infor-
mation-Criterion (BIC) Processor” is used to compute the BIC
scores of the clustering results of K-Means based on logarithm
operations to estimate numbers of clusters, and the number of
clusters associated with the highest BIC score is selected. The
second module, the “Trial Monitor” preserves the best clus-
tering results of K-Means trials by storing the corresponding
cluster centroids. The last module, the “K-Means Engine”
performs the iterative clustering process of K-Means with the
hierarchical sampling technique and communicates with the
two modules mentioned above. In this section, the function-
alities of these modules and state transitions are introduced.
The architecture of the “BIC Processor,” which is one of the
important contributions of this work, is described in Section IV.

Contained in the “Core Control” shown in Fig. 4, the global
finite-state machine of the efficient K-Means hardware is shown
in Fig. 5, which includes four states. The state transitions are
explained with the interactions among the modules of the
K-Means hardware. Initially, the state is IDLE, and two com-
mands for clustering and classification can be issued externally.
After receiving the clustering command, K-Means clustering

Fig. 5. Global finite-state machine of the efficient K-Means hardware.

is performed in the CLUSTERING state in the “K-Means En-
gine.” The requests and addresses for the input vectors with the
hierarchical sampling patterns are generated by the “Address
Generator,” which is connected to the “Output Interface” in
Fig. 4. After a single trial of K-Means is finished, the clustering
results are sent to the “BIC Processor” to compute the BIC
score, which is then stored in the “Trial Monitor” with the
cluster centroids from the “K-Means Engine.” If the K-Means
trials are not finished, K-Means clustering is performed again
with different centroid initializations. In the BIC state, the BIC
score of this trial of K-Means is also computed, and the cluster
centroids in the “Trial Monitor” are updated if the BIC score
is higher than the one stored in the “Trial Monitor.” Based
on this procedure, the clustering results with the highest BIC
score can be preserved. Not only can the number of clusters
be determined, the clustering results with higher qualities than
existing K-Means architectures can also be generated. When
all the trials of K-Means are finished, the operations stop and
the state returns to IDLE. Then, the labels of input vectors can
be retrieved by issuing the classification command, and the
clustering results with the best BIC score stored in the “Trial
Monitor” are dumped out in the CLASSIFIER state. The state
transitions of the global finite-state machine are consistent with
the algorithm mentioned in Section II.

The “K-Means Engine” contains four “EM” modules [15],
which are also called the “E-M Distance Calculators” [13], to
handle 4-D vectors and compute the Euclidean distances and the
Manhattan distances by using the same hardware resources. The
data gating mechanism is employed in distance calculations to
save power consumption for different numbers of clusters. The
“Vector Dividers” [15] are also included to compute the divisions
for the variance and the updated centroids. In order to handle the
variance computation, the summation of the Euclidean distances
has to be accumulated, and the bit length of the dividend and the
divisor needs to be extended from the bit length of the ones used
in our previous works [13], [15]. The local finite-state machine,
which is shownin Fig. 6, is contained in the “K-Means Engine.” It
corresponds to the CLUSTERING state of the global finite-state
machine and consists of the states to handle the data sampling
in each hierarchical level. In the INITIAL state, the “K-Means
Engine” sends the request for the vectors that are used for the
centroid initialization. Next, in the CHECK state, whether the



CHEN et al.: POWER-EFFICIENT HARDWARE ARCHITECTURE OF K-MEANS CLUSTERING WITH BAYESIAN-INFORMATION-CRITERION PROCESSOR 361

Fig. 6. Local finite-state machine in the CLUSTERING state of the global finite-
state machine of the efficient K-Means hardware.

iterations based on the hierarchical data sampling are finished
or not is checked. The hierarchical data sampling starts from the
highest level to the lowest level. The iterative process of K-Means
continues in the current sampling level if the iterations are not
finished. Otherwise, the sampling level of K-Means proceeds to
thenext level.Each levelof thesamplingcorresponds toonestate,
and the divisions for the cluster centroid updating are performed
in the DIVISION state after one iteration in each level of the
hierarchical data sampling is over. When the maximum number
of iterations is reached or the K-Means iterative procedure ter-
minates, the centroids are computed in the DIVISION state and
regarded as the initial centroids in the following level. After the
LEVEL 0 state is reached and K-Means iterations are finished,
the centroids that represent the clustering results are generated
in the DIVISION state. The variance computation for the BIC
score is completed in the VARIANCE state with the “Vector
Dividers” based on the accumulated Euclidean distances and the
data number of input vectors.

IV. BAYESIAN-INFORMATION-CRITERION PROCESSOR

The BIC, also known as the Schwarz criterion, is a method
that can be employed to estimate the suitable number of clusters

. The BIC formula is defined as follows [17], [18]:

(3)

where is the log likelihood of the data according to the
th model and taken at the maximum likelihood point, and is

the number of parameters in , which is equal to
under the identical spherical Gaussian distribution [16]–[18].
Note that denotes the number of dimensions of each input
vector. The model with the largest score is selected, and the
number of clusters can be estimated. The maximum likelihood
estimate for the variance is shown as follows:

(4)

where denotes the index of the centroid that is the closest to
the input vector is the data number of input vectors, and

is the centroid associated with the input vector . It can be
computed from the total distortion defined in (2). Based on
the point probabilities [17], [18], the log-likelihood of the data
can be calculated as follows:

(5)

Since the purpose of computing BIC scores is to estimate the
number of clusters of the same set of input vectors, (5) can be
simplified. The first term, the fifth term, and part of the third
term do not change with the same set of input vectors, so they
can be ignored when BIC scores are compared. By multiplying
(5) by 2 and reducing the first term, the fifth term, and parts
of the third term, the modified BIC formula can be obtained as
follows:

(6)

which gives the same comparison results as the BIC score com-
puted based on (5) when the same set of input vectors are con-
sidered. Then, to reduce the hardware costs and the design com-
plexity, two schemes are applied here. The first is the reuse of
the same multiplier. Due to the high hardware costs for long
bit-length multipliers, only one multiplier is employed in the
“BIC Processor.” Besides, to reduce the design costs of multi-
plications with negative numbers, constants and are added
to the equation to make all the input values positive before per-
forming multiplications. Since BIC scores are used for compar-
isons, adding constants to (6) does not affect the final result. The
hardware-oriented BIC formula is shown as follows:

(7)

which contains additions, subtractions, multiplications, and log-
arithm operations. The precision analysis and the hardware ar-
chitectures are introduced in the following subsections.

A. Precision Analysis and Architecture of Log Processor

To compute the score of BIC based on (7), the computations
of the natural logarithm function are inevitable. The analysis and
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Fig. 7. (a) Natural logarithm function and approximations with powers of dif-
ferent integers. (b) Relation between the precision error and the bit length for
the fractional part with different methods.

design of the “Log Processor” are introduced in this subsection.
Since the maximum data number of the K-Means hardware is
set to , the maximum input value of the logarithm function is
also equal to this value. Based on the cost analysis, it is not pos-
sible to store entries for the logarithm look-up table (LUT).
Therefore, the LUT based on the linear interpolation is adopted.
To match up the value variation of the logarithm function, the
powers of integers are used for sample points of interpolation.
Fig. 7(a) shows three examples of the natural logarithm func-
tion based on the linear interpolation by using sample points
with powers of 2, 4, and 8. It is clearly shown that using powers
of 2 can approximate the logarithm function the best. In the de-
sign of the “Log Processor” architecture, a total of 21 sample
points, , are stored in the LUT, and the ap-
proximated logarithm function, which is suitable for hardware
implementation, is expressed in the following formula:

(8)

In order to achieve low precision errors in the hardware ar-
chitecture, the relation between the precision error and the bit
length for the fractional part with different methods is analyzed
in Fig. 7(b). The result shows that the precision errors based
on the floor function, the round function, and the ceiling func-
tion are approximately the same when the bit length of the frac-
tional part is long. However, when the bit length of the fractional

Fig. 8. Relation among the precision error, the bit length for the multiplication,
and the bit length for the fractional part.

part is short, the precision errors of the floor function, the round
function, and the ceiling function become different. The ceiling
function gives the best result when the bit length of the fractional
part is equal to 5. Based on the ceiling function, the bit length
for the multiplication in the linear interpolation is also analyzed,
and the relation among the precision error, the bit length for the
multiplication, and the bit length for the fractional part, is shown
in Fig. 8 as a 3-D plot. It is observed that the variation of the error
is stable as the parameters become large, and the increment of
the bit lengths does not necessarily reduce the error. By consid-
ering the trade-off of these parameters and the error, the local
minimum of the precision can be found when the bit length for
the multiplication is 5 and the bit length for the fractional part is
5. Note that the bit lengths are only considered in internal pro-
cessing of the “Log Processor.”

Based on the analysis above, the architecture of the “Log Pro-
cessor” is established in Fig. 9. There are four pipeline stages
in this architecture, and the format of input vectors is the fixed-
point integer. In the first stage, the “Most-Significant-Bit (MSB)
Locator” is employed to find the position of the MSB of the
input number, and the output of the “MSB Locator” includes
the position of the MSB and the lower sample point that is the
closest to the input value. Note that the sample points are all
expressed as powers of 2. Then, in the second stage, the differ-
ence of input number and the lower sample point is obtained,
and two logarithm values are read from the “Dual Log LUT” to
compute the difference, which is the value of in the numer-
ator of (8). These two logarithm values correspond to the lower
and the upper sample points that are the closest to the input,
respectively, and they are represented as the fixed-point format
with the integer part and the fractional part. Next, in the third
stage, the product of the input difference and the logarithm dif-
ference is obtained for the interpolation. Finally, in the fourth
stage, the division operation is saved by ridding of redundant
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Fig. 9. Architecture of the “Log Processor” and the detailed pipeline stages.

bits with the “Round Module,” and the interpolated logarithm
value which corresponds to the input number is generated with
both the integer part and the fractional part.

B. Architecture of BIC Processor

The architecture of the “BIC Processor,” which is shown in
Fig. 10, is designed based on (7). It contains the “Log Pro-
cessor,” two processing element (PE) sets (the “BIC PE Set

” and the “BIC PE Set ”), and an accumulator. The func-
tion of the “Log Processor,” whose architecture is described in
Section IV, is to compute the natural logarithm function with a
throughput of 1 output/cycle. After receiving the output value
from the “Log Processor,” The “BIC PE Set ” is employed to
compute the value of in (7). In the “BIC PE Set

,” a three-stage multiplier that can process 20-bit 12-bit mul-
tiplications is included to compute the value of

in (7) for different clusters. By combining the
outputs of the two PE sets, the result of (7) can be obtained.
The five pipeline stages of the latter half of the “BIC Processor”
are also shown in Fig. 10. It takes two pipeline stages and four
pipeline stages to complete the computations in the “BIC PE Set

” and the “BIC PE Set ,” respectively. In the fifth pipeline
stage, the BIC score is summed up. Altogether clock cy-
cles are needed in the latter half of the “BIC Processor” to com-
pute the BIC scores. Therefore, 9 cycles are required when the
number of clusters . Based on the hardware architecture
of the “BIC Processor,” the BIC scores for different numbers of
clusters can be computed and employed to select the optimal
number of clusters.

V. EXPERIMENTAL RESULTS

The experiments, which contain five parts, are discussed
in the following subsections. First, the algorithm of the pro-
posed method is verified and the applications with the efficient
K-Means hardware are shown. Then, the architectural analysis
of the hardware is performed. Next, the comparisons of hard-
ware specifications with previous works are discussed, and the
performance of the proposed algorithm is evaluated on a GPU
to be compared with the efficient K-Means architecture. Last

Fig. 10. Architecture of the “BIC processor” and the detailed pipeline stages.

but not least, the power scalability of the efficient K-Means
hardware is described.

A. Algorithm Verification and Applications

The multimedia applications including image segmentation
[8], [13] and color clustering, which are implemented in our
previous works [13], [15], are tested using the proposed hard-
ware. However, different from existing works, two new appli-
cations are demonstrated in this subsection. The first is motion
segmentation, and the second is edge-adaptive noise reduction.
K-Means can be applied to motion segmentation for moving
image representation [20]. In this implementation, each input
vector has three dimensions, including two dimensions for mo-
tion vectors and one dimension for motion magnitudes. Image
blocks with similar motion directions are prone to be in the same
cluster. For edge-adaptive noise reduction, K-Means clustering
is performed with the pixels in each window of the input image
as a filtering process. The number of clusters is estimated based
on the BIC score, and the color of the cluster centroid that the
center pixel in the window belongs to is used to represent the
filtering result of each window.

The results of both motion segmentation and edge-adaptive
noise reduction obtained from the software simulation are ex-
actly the same as the ones obtained from the hardware compu-
tation based on Verilog HDL simulation. Fig. 11 shows some
motion segmentation results of different frames in two CIF-size
video sequences, and the most suitable number of clusters is
chosen for each frame. In one sequence, Fig. 11(b) is the seg-
mentation result of Fig. 11(a), and Fig. 11(c) shows the mo-
tion vectors, which are represented as black lines and gener-
ated based on overlapping 16 16-pixel windows with a 2-D
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Fig. 11. Example of motion segmentation based on the proposed hardware ar-
chitecture. (a) Frame 126 of the video sequence, “Football.” (b) The motion
segmentation result of frame 126 in “Football.” (c) The motion vectors of frame
126 of the video sequence, “Football.” (d) The motion segmentation result of
frame 85 in “Coastguard.” (e) The motion segmentation result of frame 194 in
“Coastguard.”

search range of in pixel. In the other sequence,
the estimated numbers of clusters are and in
Fig. 11(d) and (e), respectively. The segmentation results can
be applied to frame-rate up-conversion (FRUC) [21] or video
content analysis. Fig. 12 shows an example of the edge-adaptive
filtering by using an image with a size of 256 256 pixels. The
noise reduction based on the traditional low-pass filter is shown
in Fig. 12(b), where the noise is eliminated, but the high-fre-
quency details are also blurred. The result of the edge-adaptive
filtering based on K-Means with estimation of numbers of clus-
ters is shown in Fig. 12(c), where the noise is eliminated, and the
high-frequency details can be preserved. The estimated numbers
of clusters in all windows are represented in different colors in
Fig. 12(d). Based on the BIC computations, it can be observed
that the number of clusters becomes larger in the windows that
cover image edges. It is reasonable since edges usually appear
in a window when there are more than two color clusters. It
takes more than 10 s for a Pentium III 3.2 GHz CPU with 2 GB
SDRAM to complete the filtering based on K-Means, but the
proposed hardware only requires less than 2 s under the condi-
tion that the operating frequency is 233 MHz and the bandwidth
of the system bus is available.

B. Architectural Analysis

In this part, the critical path and hardware costs of each
module in the efficient K-Means hardware architecture are an-

Fig. 12. Example of edge-adaptive noise reduction based on the proposed hard-
ware architecture. (a) The original image, “Baboon,” which is corrupted with
Gaussian noise (���� � ����	 dB). (b) The noise reduction result based on
the traditional low-pass filter (���� � 
��
	 dB). (c) The noise reduction
result based on the efficient K-Means hardware (���� � 

�	� dB). (d) The
result of estimation of numbers of clusters based on the efficient K-Means hard-
ware. Note that there are four gray-scale levels, which represent numbers of
clusters from � � � to � � �. The lower the gray-scale level, the smaller the
number of clusters.

Fig. 13. Area percentage breakdown of main modules in the efficient K-Means
hardware.

alyzed using the logic synthesis tool, Synopsys Design Vision,
with the TSMC 90 nm technology library. The maximum clock
frequency achieves 625 MHz, the total gate count is 51 K, and
the corresponding area is 0.14 mm . The high frequency results
from the pipeline techniques employed in the hardware design.
The area breakdown of each module is shown in Fig. 13, where
the “K-Means Engine” occupies 76% of the whole design. The
“BIC Processor,” which is the key module to estimate numbers
of clusters, occupies 13% of the area, which is equivalent to
0.02 mm . The results reflect the low-cost property of the
architecture, and the small area reduces the overhead to inte-
grate the efficient K-Means hardware with other complicated
multimedia systems.
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C. Comparison of Hardware Specifications

The comparison results of hardware specifications are sum-
marized in Table I, where the proposed work is compared with
previous works [12], [13], [15]. Note that the gate counts do not
include the local memory for input vectors. This work achieves
the highest clock frequency among previous works by using
the 90-nm complimentary metal-oxide semiconductor (CMOS)
technology. Although this work supports smaller numbers of
clusters and lower-dimensional vectors than previous works, the
functionality is enough for the testing applications. Besides, the
area of this work is the smallest among all the works. By com-
puting the gate count per maximum throughput for all of our
works, the results show that this work achieves the lowest value,
13 K cycle/dimension, which conforms to the low-cost goal for
the K-Means architecture. Moreover, this work supports the hi-
erarchical sampling technique for speed acceleration, which can
make the clustering process terminate earlier than the traditional
K-Means. Furthermore, the clustering quality of this work can
be improved by increasing the total number of trials, which can
not be supported by previous works. The architecture to estimate
numbers of clusters, which is not included in previous works
and related works [6]–[11], is also integrated into the efficient
K-Means hardware. By combining the low-cost advantage, the
hierarchical sampling technique, and the functionality to esti-
mate numbers of clusters, the proposed K-Means architecture
can be employed efficiently for applications that are different
from existing works.

D. GPU Implementation and Performance Evaluation

While evaluating the efficient K-Means hardware architec-
ture, the modern GPU which contains highly-parallel stream
processing architectures is also compared. Recently, modern
GPU architectures have become more and more flexible. Not
only the high-quality rendering algorithms are supported,
general-purpose computations are also mapped to the graphics
hardware. The technique is called general-purpose compu-
tations on graphics processing units (GPGPU) [23]. Sun’s
GPU [24], [25], which supports OpenGL ES 2.0 and OpenGL
Shading Language, is adopted for the implementation of
K-Means. The GPU model is improved from the architecture of
the previous chip design [26]. Since the GPU is also designed
for embedded systems of mobile devices, it is suitable for the
comparison with the proposed hardware. The details of the
implementation are given in the Appendix.

Table II shows the specifications of the GPU [25] with the
K-Means implementation. The throughput of the GPU is close
to the efficient K-Means hardware by using 16 single-instruc-
tion multiple-data (SIMD) cores, and both the maximum data
number and the maximum number of clusters are higher than
the K-Means architecture. The performance of the algorithm is
proportional to the number of SIMD cores in the GPU. Since
the computation power of 16 cores is equal to typical commer-
cial off-the-shelf (COTS) mobile graphics chips, the 16-SIMD-
core implementation is chosen for comparison. The GPU shows
its ability to support K-Means clustering with high specifica-
tions. However, the main overhead of supporting these features
for K-Means clustering is the gate count, which is 52.9 times
higher than the K-Means hardware. Besides, the gate count per

throughput of the GPU is approximately 63 times higher than
the K-Means hardware. Clearly, this comparison manifests the
low-cost advantages of the proposed K-Means hardware archi-
tecture.

E. Power Consumption

To compare the power consumption of previous works and
this work, a K-Means accelerator with 16-parallel “EM” mod-
ules [15] that can process 64 clusters is developed based on the
hardware architecture in our previous works [12], [13]. The ac-
celerator is implemented with the TSMC 90 nm technology, and
its processing capability is higher than the efficient K-Means ar-
chitecture. The maximum throughput of this accelerator is 5 di-
mension/cycle, and the power consumption of the accelerator is
209 mW when the clock frequency is 500 MHz and .

In this work, the efficient K-Means architecture is imple-
mented with the TSMC 90 nm technology by using the place-
and-route tool, Cadence SoC Encounter to analyze the power
dissipation. The core size is 0.7 mm 0.7 mm, and a part of the
core area is reserved for other designs. The result is shown in
Fig. 14, where the power consumption is analyzed in different
vector dimensions and different values of . The power con-
sumption of the hardware achieves 12.95 mW with 4-D vectors
and four clusters when the operating frequency is 233 MHz. In
the case of processing 1-D vectors with only one cluster, the
power consumption is 10.72 mW, and 17.2% of power is saved.
It is shown that the power consumption of the hardware is ap-
proximately proportional to the number of clusters and the
number of dimensions, and the power scalability results from
the data gating mechanism for distance calculations. Because
of the low power consumption, the efficient architecture is ap-
plicable to systems in energy-aware devices.

VI. CONCLUSION AND FUTURE WORK

A power-efficient and low-cost K-Means hardware architec-
ture based on the hierarchical sampling technique is proposed
with the “BIC Processor” to estimate numbers of clusters. The
integration of the hierarchical data sampling in the hardware ac-
celerates the clustering speed of K-Means to achieve higher ef-
ficiency than existing works. The proposed architecture can be
used for motion segmentation and edge-adaptive noise reduc-
tion with low dimensions and small numbers of clusters, and
the strengths of the hardware are verified by comparing with
the GPU in the experiments.

This work focuses on low area costs and low power dissi-
pation of K-Means to provide new strategies for multimedia
processing in the resource-limited embedded systems, and the
power consumption scales well with the number of clusters and
the number of dimensions. The design mechanism of the “BIC
Processor” can also be extended to other K-Means architec-
tures with different specifications. For future developments, a
robust K-Means hardware architecture that can handle evolu-
tionary clustering problems might be the next target.

APPENDIX

The data flow for K-Means clustering with the hierarchical
sampling technique in the GPGPU implementation with Sun’s
GPU [24], [25] is shown in Fig. 15, where the single iteration
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TABLE I
COMPARISON OF THIS WORK AND PREVIOUS WORKS

TABLE II
SPECIFICATIONS OF GPU IMPLEMENTATION

Fig. 14. Power consumption of the efficient K-Means hardware when the op-
erating frequency is 233 MHz.

of K-Means clustering can be divided into two stages, which
are the Nearest Centroid Computation stage and the Centroid
Update stage.

In the Nearest Centroid Computation stage, each polygon
represents one sampling data of the current iteration. The width
of each polygon is equal to the total number of trials, and the

Fig. 15. Illustration of the data flow of K-Means with the hierarchical data
sampling in the GPU. � and� denote the total number of trials and the number
of clusters, respectively.

height is equal to the number of clusters. Each point in the
polygon represents one cluster in one trial. In the same column
(one of the trials), when the distance between the current
polygon (one of the sampling data) and the point (one of the
clusters) is the minimum, the output vectors stored in the point
are rendered for the current sampling data. Otherwise, the point
is discarded. The blending function and the stencil function in
the adding mode are set to accumulate the output vectors of
each point and the number of rendered points into the frame
buffer and the stencil buffer, respectively. In other words, after
all polygons are processed, the results in the frame buffer and
the stencil buffer represent the accumulated vectors and the
count for each cluster, respectively.

In the Centroid Update stage, there is only one polygon that
needs be processed. The only computation of each point is the
division operation, where the corresponding values in the frame
buffer (accumulated vectors) are divided by the corresponding
value in the stencil buffer (count). Afterwards, the new centroids
are generated in the current frame buffer to be used for the next
iteration.
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